Zhihui Men, Yonghua Li, Wuchu Tang, Denglong Wang, Jiahong Cao
{"title":"用于铁路货车轴承故障诊断的新型多模态时间序列变换方法和多尺度卷积注意力网络","authors":"Zhihui Men, Yonghua Li, Wuchu Tang, Denglong Wang, Jiahong Cao","doi":"10.1177/10775463241276024","DOIUrl":null,"url":null,"abstract":"To align with the evolving trends in intelligent railway wagon operation and maintenance and to enhance the precision of railway wagon bearing fault diagnosis, this paper introduces a novel method for bearing fault diagnosis. The method comprises two key innovations. Firstly, a multi-modal time series transformation method is proposed. This method extracts time series data from the original time domain signals via self-adaptive ensemble empirical mode decomposition with adaptive noise, transforms them into 2D matrices, and captures inter- and intra-period information relationships through convolution. Secondly, a multi-scale convolutional attention network is introduced, enriching fault information by utilizing parallel multi-scale convolution for down-sampling. To prevent feature loss, sliding convolution is adopted instead of pooling. Additionally, the model incorporates the convolutional block attention module to focus on critical information. Experimental validation conducted in a laboratory using a self-developed railway wagon bearing dynamic performance tester demonstrates high diagnostic accuracy and strong overall performance. The method’s generalizability is further confirmed through validation using publicly available datasets. This method could find practical use in railway maintenance, improving the accuracy of bearing fault diagnosis, and making operations more efficient.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"11 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new multi-modal time series transformation method and multi-scale convolutional attention network for railway wagon bearing fault diagnosis\",\"authors\":\"Zhihui Men, Yonghua Li, Wuchu Tang, Denglong Wang, Jiahong Cao\",\"doi\":\"10.1177/10775463241276024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To align with the evolving trends in intelligent railway wagon operation and maintenance and to enhance the precision of railway wagon bearing fault diagnosis, this paper introduces a novel method for bearing fault diagnosis. The method comprises two key innovations. Firstly, a multi-modal time series transformation method is proposed. This method extracts time series data from the original time domain signals via self-adaptive ensemble empirical mode decomposition with adaptive noise, transforms them into 2D matrices, and captures inter- and intra-period information relationships through convolution. Secondly, a multi-scale convolutional attention network is introduced, enriching fault information by utilizing parallel multi-scale convolution for down-sampling. To prevent feature loss, sliding convolution is adopted instead of pooling. Additionally, the model incorporates the convolutional block attention module to focus on critical information. Experimental validation conducted in a laboratory using a self-developed railway wagon bearing dynamic performance tester demonstrates high diagnostic accuracy and strong overall performance. The method’s generalizability is further confirmed through validation using publicly available datasets. This method could find practical use in railway maintenance, improving the accuracy of bearing fault diagnosis, and making operations more efficient.\",\"PeriodicalId\":17511,\"journal\":{\"name\":\"Journal of Vibration and Control\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10775463241276024\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241276024","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
A new multi-modal time series transformation method and multi-scale convolutional attention network for railway wagon bearing fault diagnosis
To align with the evolving trends in intelligent railway wagon operation and maintenance and to enhance the precision of railway wagon bearing fault diagnosis, this paper introduces a novel method for bearing fault diagnosis. The method comprises two key innovations. Firstly, a multi-modal time series transformation method is proposed. This method extracts time series data from the original time domain signals via self-adaptive ensemble empirical mode decomposition with adaptive noise, transforms them into 2D matrices, and captures inter- and intra-period information relationships through convolution. Secondly, a multi-scale convolutional attention network is introduced, enriching fault information by utilizing parallel multi-scale convolution for down-sampling. To prevent feature loss, sliding convolution is adopted instead of pooling. Additionally, the model incorporates the convolutional block attention module to focus on critical information. Experimental validation conducted in a laboratory using a self-developed railway wagon bearing dynamic performance tester demonstrates high diagnostic accuracy and strong overall performance. The method’s generalizability is further confirmed through validation using publicly available datasets. This method could find practical use in railway maintenance, improving the accuracy of bearing fault diagnosis, and making operations more efficient.
期刊介绍:
The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.