{"title":"不同水冷结构的超大型梁坯连铸模具的传热行为","authors":"Shi-bo Wang, Zhao-zhen Cai, Miao-yong Zhu","doi":"10.1007/s11663-024-03241-9","DOIUrl":null,"url":null,"abstract":"<p>The excellent water-cooling structure contributes to achieve efficient and reasonable heat transfer in the mold, which is essential for achieving the ultra-large beam blank continuous casting (ULBBCC). Therefore, this work designed different ultra-large beam blank mold (ULBBM) which were composed of three wide face copper plates with different water-cooling structures and two narrow face copper plates with different water-cooling structures, on the basis of which a three-dimensional heat transfer model of the copper plate coupling with the cooling water flow in the water-cooling structure was developed with the consideration of fluid-solid coupling interaction. Then, the accuracy of the model was verified by comparing the model-predicted and measured water temperatures. Finally, the focus is comparing the heat transfer behavior of the mold under different water-cooling structures, as well as the temperature and flow evolution of the cooling water, and the most optimal water-cooling structure was proposed. The results show that the water-cooling structure of water slots with semicircular roots (Mold II) contributes the narrow face copper plate of ULBBM to obtain excellent temperature uniformity and achieve homogenization of heat transfer. The water-cooling structure of small hole water channel with a diameter of 10 mm (Mold III) decreases the maximum temperature at the fillet of wide face copper plate of ULBBM to 582.9 K and the maximum circumferential temperature difference near the meniscus to 103.3 K, and which contributes the wide face copper plate to obtain higher temperature uniformity and lower fillet temperature, and achieve homogenization of heat transfer.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Heat Transfer Behavior of Ultra-Large Beam Blank Continuous Casting Mold with Different Water-Cooling Structure\",\"authors\":\"Shi-bo Wang, Zhao-zhen Cai, Miao-yong Zhu\",\"doi\":\"10.1007/s11663-024-03241-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The excellent water-cooling structure contributes to achieve efficient and reasonable heat transfer in the mold, which is essential for achieving the ultra-large beam blank continuous casting (ULBBCC). Therefore, this work designed different ultra-large beam blank mold (ULBBM) which were composed of three wide face copper plates with different water-cooling structures and two narrow face copper plates with different water-cooling structures, on the basis of which a three-dimensional heat transfer model of the copper plate coupling with the cooling water flow in the water-cooling structure was developed with the consideration of fluid-solid coupling interaction. Then, the accuracy of the model was verified by comparing the model-predicted and measured water temperatures. Finally, the focus is comparing the heat transfer behavior of the mold under different water-cooling structures, as well as the temperature and flow evolution of the cooling water, and the most optimal water-cooling structure was proposed. The results show that the water-cooling structure of water slots with semicircular roots (Mold II) contributes the narrow face copper plate of ULBBM to obtain excellent temperature uniformity and achieve homogenization of heat transfer. The water-cooling structure of small hole water channel with a diameter of 10 mm (Mold III) decreases the maximum temperature at the fillet of wide face copper plate of ULBBM to 582.9 K and the maximum circumferential temperature difference near the meniscus to 103.3 K, and which contributes the wide face copper plate to obtain higher temperature uniformity and lower fillet temperature, and achieve homogenization of heat transfer.</p>\",\"PeriodicalId\":18613,\"journal\":{\"name\":\"Metallurgical and Materials Transactions B\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11663-024-03241-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03241-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Heat Transfer Behavior of Ultra-Large Beam Blank Continuous Casting Mold with Different Water-Cooling Structure
The excellent water-cooling structure contributes to achieve efficient and reasonable heat transfer in the mold, which is essential for achieving the ultra-large beam blank continuous casting (ULBBCC). Therefore, this work designed different ultra-large beam blank mold (ULBBM) which were composed of three wide face copper plates with different water-cooling structures and two narrow face copper plates with different water-cooling structures, on the basis of which a three-dimensional heat transfer model of the copper plate coupling with the cooling water flow in the water-cooling structure was developed with the consideration of fluid-solid coupling interaction. Then, the accuracy of the model was verified by comparing the model-predicted and measured water temperatures. Finally, the focus is comparing the heat transfer behavior of the mold under different water-cooling structures, as well as the temperature and flow evolution of the cooling water, and the most optimal water-cooling structure was proposed. The results show that the water-cooling structure of water slots with semicircular roots (Mold II) contributes the narrow face copper plate of ULBBM to obtain excellent temperature uniformity and achieve homogenization of heat transfer. The water-cooling structure of small hole water channel with a diameter of 10 mm (Mold III) decreases the maximum temperature at the fillet of wide face copper plate of ULBBM to 582.9 K and the maximum circumferential temperature difference near the meniscus to 103.3 K, and which contributes the wide face copper plate to obtain higher temperature uniformity and lower fillet temperature, and achieve homogenization of heat transfer.