Leila Ghasemi, Seyed Hossein Seyedein, Mandana Adeli, Mohammad Reza Aboutalebi
{"title":"钛铁矿非等温氢还原动力学的构造模型与实验验证:关于 Kahnuj 钛铁矿的案例研究","authors":"Leila Ghasemi, Seyed Hossein Seyedein, Mandana Adeli, Mohammad Reza Aboutalebi","doi":"10.1007/s11663-024-03236-6","DOIUrl":null,"url":null,"abstract":"<p>In this study, the reduction kinetics of ilmenite concentrate from a domestic mine (Kahnuj, Kerman, Iran) in pure hydrogen in the temperature range of 500 °C to 1100 °C was investigated. From the non-isothermal reduction results corresponding kinetic parameters for the as-received and pre-oxidized concentrates were calculated using the Coats-Redfern method. The reduction process in both raw and pre-oxidized ilmenite, at 800 °C was controlled by diffusion through the product layer. The kinetic analysis for ilmenite pre-oxidized at 1000 °C indicated that the reduction process followed a chemical reaction and nucleation and growth mechanism. The samples pre-oxidized at 800 °C and 1000 °C exhibited higher mass loss values and reduction degrees compared to the raw ilmenite. The promoting effect of pre-oxidation on the reduction of ilmenite is attributed to the phase changes in pre-oxidized ilmenite and the porous structure created during the reduction process after the pre-oxidation process. X-ray diffraction (XRD) patterns confirmed the presence of pseudorutile, rutile, and hematite after oxidation at 800 °C, and pseudobrookite and rutile were stable phases after oxidation at 1000 °C.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constitutive Model and Experimental Verification of Kinetics of Non-isothermal Hydrogen Reduction of Ilmenite: A Case Study on Kahnuj Ilmenite\",\"authors\":\"Leila Ghasemi, Seyed Hossein Seyedein, Mandana Adeli, Mohammad Reza Aboutalebi\",\"doi\":\"10.1007/s11663-024-03236-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the reduction kinetics of ilmenite concentrate from a domestic mine (Kahnuj, Kerman, Iran) in pure hydrogen in the temperature range of 500 °C to 1100 °C was investigated. From the non-isothermal reduction results corresponding kinetic parameters for the as-received and pre-oxidized concentrates were calculated using the Coats-Redfern method. The reduction process in both raw and pre-oxidized ilmenite, at 800 °C was controlled by diffusion through the product layer. The kinetic analysis for ilmenite pre-oxidized at 1000 °C indicated that the reduction process followed a chemical reaction and nucleation and growth mechanism. The samples pre-oxidized at 800 °C and 1000 °C exhibited higher mass loss values and reduction degrees compared to the raw ilmenite. The promoting effect of pre-oxidation on the reduction of ilmenite is attributed to the phase changes in pre-oxidized ilmenite and the porous structure created during the reduction process after the pre-oxidation process. X-ray diffraction (XRD) patterns confirmed the presence of pseudorutile, rutile, and hematite after oxidation at 800 °C, and pseudobrookite and rutile were stable phases after oxidation at 1000 °C.</p>\",\"PeriodicalId\":18613,\"journal\":{\"name\":\"Metallurgical and Materials Transactions B\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11663-024-03236-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03236-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constitutive Model and Experimental Verification of Kinetics of Non-isothermal Hydrogen Reduction of Ilmenite: A Case Study on Kahnuj Ilmenite
In this study, the reduction kinetics of ilmenite concentrate from a domestic mine (Kahnuj, Kerman, Iran) in pure hydrogen in the temperature range of 500 °C to 1100 °C was investigated. From the non-isothermal reduction results corresponding kinetic parameters for the as-received and pre-oxidized concentrates were calculated using the Coats-Redfern method. The reduction process in both raw and pre-oxidized ilmenite, at 800 °C was controlled by diffusion through the product layer. The kinetic analysis for ilmenite pre-oxidized at 1000 °C indicated that the reduction process followed a chemical reaction and nucleation and growth mechanism. The samples pre-oxidized at 800 °C and 1000 °C exhibited higher mass loss values and reduction degrees compared to the raw ilmenite. The promoting effect of pre-oxidation on the reduction of ilmenite is attributed to the phase changes in pre-oxidized ilmenite and the porous structure created during the reduction process after the pre-oxidation process. X-ray diffraction (XRD) patterns confirmed the presence of pseudorutile, rutile, and hematite after oxidation at 800 °C, and pseudobrookite and rutile were stable phases after oxidation at 1000 °C.