利用稀土金属卤化物的金属热还原从钛中直接脱氧的热力学考量

Toru H. Okabe, Gen Kamimura, Takanari Ouchi
{"title":"利用稀土金属卤化物的金属热还原从钛中直接脱氧的热力学考量","authors":"Toru H. Okabe, Gen Kamimura, Takanari Ouchi","doi":"10.1007/s11663-024-03118-x","DOIUrl":null,"url":null,"abstract":"<p>As the demand for titanium (Ti) continues to grow, so too does the use of Ti scrap, underscoring the need for innovative techniques for the efficient removal of oxygen (O) impurities from Ti scrap. Despite the immense challenge of directly removing oxygen from Ti–O solid solutions and the current lack of industrially applicable deoxidation methods, the current work explores a groundbreaking approach to address this issue. The thermodynamic analysis of a new technique for eliminating oxygen dissolved in solid Ti was conducted, leveraging the deoxidation properties of rare earth metals (REMs) such as Sc, Y, and La. This cutting-edge method relies on the <i>in-situ</i> production of REMs through the metallothermic reduction of REM halides. It was shown that Sc or Y metal can be synthesized <i>via</i> the reduction of ScCl<sub>3</sub> by Mg or YCl<sub>3</sub> by Li or Na, respectively. Ti with oxygen concentrations below 100 mass ppm can be obtained by leveraging the deoxidation properties of the Sc and Y metals produced <i>in situ</i> during the metallothermic reduction process, which contribute to deoxidation through their subsequent oxychloride-forming reactions. Employing REM halides in tandem with Li, Na, and Mg enables the efficient removal of oxygen impurities from Ti, even though these reactive metals have only weak deoxidation properties for Ti on their own. Remarkably, the proposed technique achieves oxygen concentrations significantly lower than those obtained using Ca metal as a deoxidant. In the future, this pioneering deoxidation method could be used to reduce CO<sub>2</sub> emissions and energy consumption during Ti production while promoting resource circulation as a key technology for Ti recycling.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Consideration of the Direct Removal of Oxygen from Titanium by Utilizing Metallothermic Reduction of Rare Earth Metal Halides\",\"authors\":\"Toru H. Okabe, Gen Kamimura, Takanari Ouchi\",\"doi\":\"10.1007/s11663-024-03118-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the demand for titanium (Ti) continues to grow, so too does the use of Ti scrap, underscoring the need for innovative techniques for the efficient removal of oxygen (O) impurities from Ti scrap. Despite the immense challenge of directly removing oxygen from Ti–O solid solutions and the current lack of industrially applicable deoxidation methods, the current work explores a groundbreaking approach to address this issue. The thermodynamic analysis of a new technique for eliminating oxygen dissolved in solid Ti was conducted, leveraging the deoxidation properties of rare earth metals (REMs) such as Sc, Y, and La. This cutting-edge method relies on the <i>in-situ</i> production of REMs through the metallothermic reduction of REM halides. It was shown that Sc or Y metal can be synthesized <i>via</i> the reduction of ScCl<sub>3</sub> by Mg or YCl<sub>3</sub> by Li or Na, respectively. Ti with oxygen concentrations below 100 mass ppm can be obtained by leveraging the deoxidation properties of the Sc and Y metals produced <i>in situ</i> during the metallothermic reduction process, which contribute to deoxidation through their subsequent oxychloride-forming reactions. Employing REM halides in tandem with Li, Na, and Mg enables the efficient removal of oxygen impurities from Ti, even though these reactive metals have only weak deoxidation properties for Ti on their own. Remarkably, the proposed technique achieves oxygen concentrations significantly lower than those obtained using Ca metal as a deoxidant. In the future, this pioneering deoxidation method could be used to reduce CO<sub>2</sub> emissions and energy consumption during Ti production while promoting resource circulation as a key technology for Ti recycling.</p>\",\"PeriodicalId\":18613,\"journal\":{\"name\":\"Metallurgical and Materials Transactions B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11663-024-03118-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03118-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着对钛(Ti)需求的不断增长,钛废料的使用量也在不断增加,这凸显了从钛废料中有效去除氧(O)杂质的创新技术的必要性。尽管从钛-氧化物固溶体中直接去除氧气是一项巨大的挑战,而且目前缺乏工业上适用的脱氧方法,但目前的研究工作探索了一种突破性的方法来解决这一问题。利用稀土金属(REMs)(如钪、钇和镧)的脱氧特性,对消除溶解在固体钛中的氧气的新技术进行了热力学分析。这种前沿方法依赖于通过稀土金属卤化物的金属热还原来就地生产稀土金属。研究表明,Sc 或 Y 金属可分别通过 Mg 还原 ScCl3 或 Li 或 Na 还原 YCl3 合成。利用金属热还原过程中在原位生成的 Sc 和 Y 金属的脱氧特性,可获得氧浓度低于 100 质量ppm 的钛。将 REM 卤化物与 Li、Na 和 Mg 结合使用,可有效去除 Ti 中的氧杂质,尽管这些活性金属本身对 Ti 的脱氧性能很弱。值得注意的是,该技术所获得的氧浓度大大低于使用 Ca 金属作为脱氧剂所获得的氧浓度。未来,这种开创性的脱氧方法可用于减少钛生产过程中的二氧化碳排放和能源消耗,同时作为钛循环利用的一项关键技术促进资源循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamic Consideration of the Direct Removal of Oxygen from Titanium by Utilizing Metallothermic Reduction of Rare Earth Metal Halides

As the demand for titanium (Ti) continues to grow, so too does the use of Ti scrap, underscoring the need for innovative techniques for the efficient removal of oxygen (O) impurities from Ti scrap. Despite the immense challenge of directly removing oxygen from Ti–O solid solutions and the current lack of industrially applicable deoxidation methods, the current work explores a groundbreaking approach to address this issue. The thermodynamic analysis of a new technique for eliminating oxygen dissolved in solid Ti was conducted, leveraging the deoxidation properties of rare earth metals (REMs) such as Sc, Y, and La. This cutting-edge method relies on the in-situ production of REMs through the metallothermic reduction of REM halides. It was shown that Sc or Y metal can be synthesized via the reduction of ScCl3 by Mg or YCl3 by Li or Na, respectively. Ti with oxygen concentrations below 100 mass ppm can be obtained by leveraging the deoxidation properties of the Sc and Y metals produced in situ during the metallothermic reduction process, which contribute to deoxidation through their subsequent oxychloride-forming reactions. Employing REM halides in tandem with Li, Na, and Mg enables the efficient removal of oxygen impurities from Ti, even though these reactive metals have only weak deoxidation properties for Ti on their own. Remarkably, the proposed technique achieves oxygen concentrations significantly lower than those obtained using Ca metal as a deoxidant. In the future, this pioneering deoxidation method could be used to reduce CO2 emissions and energy consumption during Ti production while promoting resource circulation as a key technology for Ti recycling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synergistic Effect of Graphite and Fly Ash on the Microstructural Evolution and Tribological Characteristics of Fe-Cu-Based Wind Turbine-Sintered Brake Pad Materials Production of Low-Oxygen Ti Powder by Magnesiothermic Reduction of TiO2 in MgCl2–KCl–CeCl3 Molten Salt Coupled CFD-DEM with Flow and Heat Transfer to Investigate the Melting and Motion of Alloy Manufacturing High Strength-Toughness High-Nitrogen Stainless Bearing Steel 30Cr15Mo1VN by Pressurized Duplex Process In Situ Observation of Aggregation of Calcium Aluminate Inclusions at Steel/Ar Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1