利用外推式机器学习方法加速发现固体催化剂

IF 1.4 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Chemistry Letters Pub Date : 2024-08-29 DOI:10.1093/chemle/upae163
Takashi Toyao
{"title":"利用外推式机器学习方法加速发现固体催化剂","authors":"Takashi Toyao","doi":"10.1093/chemle/upae163","DOIUrl":null,"url":null,"abstract":"Designing novel catalysts is pivotal for overcoming numerous energy and environmental challenges. Although data science approaches, particularly machine learning (ML) approaches, hold promise for accelerating catalyst development, discovering truly novel catalysts through ML remains rare. This is largely due to the perceived inability of the ML models to extrapolate and identify exceptional materials. In this Review, I present our approach taken to tackle this limitation. Specifically, we employed an advanced ML methodology that could make extrapolative predictions. This approach led to the discovery of multielemental solid catalysts for CO2 hydrogenation to CO. The results not only demonstrate the immense potential of ML in catalysis research but also set a new standard for the rapid development of high-performance catalysts.","PeriodicalId":9862,"journal":{"name":"Chemistry Letters","volume":"2 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward accelerated discovery of solid catalysts using extrapolative machine learning approach\",\"authors\":\"Takashi Toyao\",\"doi\":\"10.1093/chemle/upae163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing novel catalysts is pivotal for overcoming numerous energy and environmental challenges. Although data science approaches, particularly machine learning (ML) approaches, hold promise for accelerating catalyst development, discovering truly novel catalysts through ML remains rare. This is largely due to the perceived inability of the ML models to extrapolate and identify exceptional materials. In this Review, I present our approach taken to tackle this limitation. Specifically, we employed an advanced ML methodology that could make extrapolative predictions. This approach led to the discovery of multielemental solid catalysts for CO2 hydrogenation to CO. The results not only demonstrate the immense potential of ML in catalysis research but also set a new standard for the rapid development of high-performance catalysts.\",\"PeriodicalId\":9862,\"journal\":{\"name\":\"Chemistry Letters\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/chemle/upae163\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chemle/upae163","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计新型催化剂对于克服众多能源和环境挑战至关重要。尽管数据科学方法,特别是机器学习(ML)方法,有望加速催化剂的开发,但通过 ML 发现真正新型催化剂的情况仍然很少见。这主要是由于人们认为 ML 模型无法推断和识别特殊材料。在本综述中,我将介绍我们为解决这一局限性而采取的方法。具体来说,我们采用了一种先进的 ML 方法,可以进行外推预测。通过这种方法,我们发现了将 CO2 加氢转化为 CO 的多元素固体催化剂。这些成果不仅证明了 ML 在催化研究中的巨大潜力,还为高性能催化剂的快速开发树立了新的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward accelerated discovery of solid catalysts using extrapolative machine learning approach
Designing novel catalysts is pivotal for overcoming numerous energy and environmental challenges. Although data science approaches, particularly machine learning (ML) approaches, hold promise for accelerating catalyst development, discovering truly novel catalysts through ML remains rare. This is largely due to the perceived inability of the ML models to extrapolate and identify exceptional materials. In this Review, I present our approach taken to tackle this limitation. Specifically, we employed an advanced ML methodology that could make extrapolative predictions. This approach led to the discovery of multielemental solid catalysts for CO2 hydrogenation to CO. The results not only demonstrate the immense potential of ML in catalysis research but also set a new standard for the rapid development of high-performance catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry Letters
Chemistry Letters 化学-化学综合
CiteScore
3.00
自引率
6.20%
发文量
260
审稿时长
1.2 months
期刊介绍: Chemistry Letters covers the following topics: -Organic Chemistry- Physical Chemistry- Inorganic Chemistry- Analytical Chemistry- Materials Chemistry- Polymer Chemistry- Supramolecular Chemistry- Organometallic Chemistry- Coordination Chemistry- Biomolecular Chemistry- Natural Products and Medicinal Chemistry- Electrochemistry
期刊最新文献
Recognition of mismatched sites in double-stranded DNA by a pair of partially noncomplementary peptide nucleic acids. C-H functionalization of camphor through emerging approaches. Tin Oxides as a Negative Electrode Material for Mg-Ion Batteries Chemometrics-assisted functionalization of boronic acid-derived supramolecules Regulating oxidation states of Cu nanowires for enhanced catalytic reduction of 4-nitrophenol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1