{"title":"催化裂化金属在 (100)、(110) 和 (211) NaCl 表面的外延生长","authors":"Praveen Kumar Rai, Nilabh Dish","doi":"10.1007/s11663-024-03264-2","DOIUrl":null,"url":null,"abstract":"<p>The research conducted on the low-temperature epitaxial growth of vapor-deposited thin face-centered cubic (fcc) metal films on the cleavage face of sodium chloride (NaCl) reveals a notable gap in comprehensive studies concerning the influence of deionized water on specially prepared (110) and (211) crystal faces of NaCl. This study emphasizes the crucial role of active contaminants in the oriented growth of thin continuous metal films, specifically silver (Ag), gold (Au), and copper (Cu), on the (110) and (211) polished faces using the flash-evaporation technique. The impact of flash evaporation on orientation changes during coalescence is highlighted, influencing the epitaxial orientation of metal films. Moreover, the research introduces a significant enhancement of epitaxy on ethanol-treated and furnace-annealed NaCl faces without the need for post-deposition annealing of wet-stripped free-standing films. The epitaxial relationships between substrates and deposits were determined through electron diffraction, while transmission electron microscopy was employed to examine crystalline defects present in wet-stripped films. This work contributes valuable insights into the intricacies of thin metal film growth on specifically treated NaCl crystal faces.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epitaxial Growth of FCC Metals on the (100), (110), and (211) NaCl Surfaces\",\"authors\":\"Praveen Kumar Rai, Nilabh Dish\",\"doi\":\"10.1007/s11663-024-03264-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The research conducted on the low-temperature epitaxial growth of vapor-deposited thin face-centered cubic (fcc) metal films on the cleavage face of sodium chloride (NaCl) reveals a notable gap in comprehensive studies concerning the influence of deionized water on specially prepared (110) and (211) crystal faces of NaCl. This study emphasizes the crucial role of active contaminants in the oriented growth of thin continuous metal films, specifically silver (Ag), gold (Au), and copper (Cu), on the (110) and (211) polished faces using the flash-evaporation technique. The impact of flash evaporation on orientation changes during coalescence is highlighted, influencing the epitaxial orientation of metal films. Moreover, the research introduces a significant enhancement of epitaxy on ethanol-treated and furnace-annealed NaCl faces without the need for post-deposition annealing of wet-stripped free-standing films. The epitaxial relationships between substrates and deposits were determined through electron diffraction, while transmission electron microscopy was employed to examine crystalline defects present in wet-stripped films. This work contributes valuable insights into the intricacies of thin metal film growth on specifically treated NaCl crystal faces.</p>\",\"PeriodicalId\":18613,\"journal\":{\"name\":\"Metallurgical and Materials Transactions B\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11663-024-03264-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03264-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Epitaxial Growth of FCC Metals on the (100), (110), and (211) NaCl Surfaces
The research conducted on the low-temperature epitaxial growth of vapor-deposited thin face-centered cubic (fcc) metal films on the cleavage face of sodium chloride (NaCl) reveals a notable gap in comprehensive studies concerning the influence of deionized water on specially prepared (110) and (211) crystal faces of NaCl. This study emphasizes the crucial role of active contaminants in the oriented growth of thin continuous metal films, specifically silver (Ag), gold (Au), and copper (Cu), on the (110) and (211) polished faces using the flash-evaporation technique. The impact of flash evaporation on orientation changes during coalescence is highlighted, influencing the epitaxial orientation of metal films. Moreover, the research introduces a significant enhancement of epitaxy on ethanol-treated and furnace-annealed NaCl faces without the need for post-deposition annealing of wet-stripped free-standing films. The epitaxial relationships between substrates and deposits were determined through electron diffraction, while transmission electron microscopy was employed to examine crystalline defects present in wet-stripped films. This work contributes valuable insights into the intricacies of thin metal film growth on specifically treated NaCl crystal faces.