堆叠高温超导带的热降解分析和受控热处理优化

Shige Yang, Bohan Tang, Zhilai Yue, Hui Yu, Bowen Xie, Sicheng Li, Yanquan Chen, Rui Niu, Jun Zhao, Peng Zhou, Wenge Chen, Shili Jiang, Donghui Jiang, Guangli Kuang
{"title":"堆叠高温超导带的热降解分析和受控热处理优化","authors":"Shige Yang, Bohan Tang, Zhilai Yue, Hui Yu, Bowen Xie, Sicheng Li, Yanquan Chen, Rui Niu, Jun Zhao, Peng Zhou, Wenge Chen, Shili Jiang, Donghui Jiang, Guangli Kuang","doi":"10.1088/1361-6668/ad6ada","DOIUrl":null,"url":null,"abstract":"High temperature superconducting (HTS) tapes have crucial applications for generating high magnetic fields with minimal power input. Given a single tape has a limited current-carrying capacity, stacked tapes are common, fabricated through methods like solder soldering or epoxy impregnation requiring heat treatment. In this work, we have investigated the efficient region for vacuum heat treatment applicable of commercial HTS tapes, analysed the thermal degradation principles and accordingly proposed a controlled heat treatment process for stacked HTS tapes to achieve more precise regulation of the critical current (<inline-formula>\n<tex-math><?CDATA ${I_{\\text{c}}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mtext>c</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"sustad6adaieqn1.gif\"></inline-graphic></inline-formula>). This heat treatment process was explored using a specialized multi-temperature zone vacuum system. Critical parameters in this process include heat treatment temperature, duration and pressure on the tape. A series of experiments were conducted at 77 K in a self-field to investigate how these parameters affect the superconductivity performance of stacked HTS tapes. Based on the experimental results, an optimal heat treatment process has been proposed. Under the current process, with the heat treatment temperature set at 200 °C, duration at 20 min, and pressure on the tape at 12 MPa, the samples exhibit favourable properties characterized by a smooth and neat appearance without defects such as pinholes or false soldering, and the superconductivity performance can be consistently maintained at more than 97%. The obtained measurements were compared with simulated results, demonstrating an error margin within 0.5%. Moreover, precise control of <inline-formula>\n<tex-math><?CDATA ${I_{\\text{c}}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mtext>c</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"sustad6adaieqn2.gif\"></inline-graphic></inline-formula> is achieved, tailored to tape and stacking specifications, allowing manageable degradation as required. This heat treatment process for stacked HTS tapes holds significant importance, especially in the context of designing cable-in-conduit conductors fabricated with stacked HTS tapes. It serves as a valuable reference for further advancements in this field.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal degradation analysis and optimization of controlled heat treatment for stacked high temperature superconducting tapes\",\"authors\":\"Shige Yang, Bohan Tang, Zhilai Yue, Hui Yu, Bowen Xie, Sicheng Li, Yanquan Chen, Rui Niu, Jun Zhao, Peng Zhou, Wenge Chen, Shili Jiang, Donghui Jiang, Guangli Kuang\",\"doi\":\"10.1088/1361-6668/ad6ada\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High temperature superconducting (HTS) tapes have crucial applications for generating high magnetic fields with minimal power input. Given a single tape has a limited current-carrying capacity, stacked tapes are common, fabricated through methods like solder soldering or epoxy impregnation requiring heat treatment. In this work, we have investigated the efficient region for vacuum heat treatment applicable of commercial HTS tapes, analysed the thermal degradation principles and accordingly proposed a controlled heat treatment process for stacked HTS tapes to achieve more precise regulation of the critical current (<inline-formula>\\n<tex-math><?CDATA ${I_{\\\\text{c}}}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mtext>c</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\\\"sustad6adaieqn1.gif\\\"></inline-graphic></inline-formula>). This heat treatment process was explored using a specialized multi-temperature zone vacuum system. Critical parameters in this process include heat treatment temperature, duration and pressure on the tape. A series of experiments were conducted at 77 K in a self-field to investigate how these parameters affect the superconductivity performance of stacked HTS tapes. Based on the experimental results, an optimal heat treatment process has been proposed. Under the current process, with the heat treatment temperature set at 200 °C, duration at 20 min, and pressure on the tape at 12 MPa, the samples exhibit favourable properties characterized by a smooth and neat appearance without defects such as pinholes or false soldering, and the superconductivity performance can be consistently maintained at more than 97%. The obtained measurements were compared with simulated results, demonstrating an error margin within 0.5%. Moreover, precise control of <inline-formula>\\n<tex-math><?CDATA ${I_{\\\\text{c}}}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mtext>c</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\\\"sustad6adaieqn2.gif\\\"></inline-graphic></inline-formula> is achieved, tailored to tape and stacking specifications, allowing manageable degradation as required. This heat treatment process for stacked HTS tapes holds significant importance, especially in the context of designing cable-in-conduit conductors fabricated with stacked HTS tapes. It serves as a valuable reference for further advancements in this field.\",\"PeriodicalId\":21985,\"journal\":{\"name\":\"Superconductor Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/ad6ada\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad6ada","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高温超导(HTS)磁带在以最小功率输入产生高磁场方面有着重要的应用。由于单个磁带的载流能力有限,因此通过焊接或环氧浸渍等需要热处理的方法制造堆叠磁带很常见。在这项工作中,我们研究了适用于商用 HTS 磁带真空热处理的有效区域,分析了热降解原理,并相应地提出了堆叠式 HTS 磁带的受控热处理工艺,以实现更精确的临界电流 (Ic) 调节。我们使用专门的多温区真空系统探索了这种热处理工艺。该工艺的关键参数包括热处理温度、持续时间和对磁带的压力。在 77 K 的自场中进行了一系列实验,以研究这些参数如何影响叠层 HTS 磁带的超导性能。根据实验结果,提出了一种最佳热处理工艺。在当前工艺下,热处理温度设定为 200 °C,持续时间为 20 分钟,对带子的压力为 12 兆帕,样品表现出良好的性能,其特点是外观光滑整洁,没有针孔或虚焊等缺陷,超导性能可始终保持在 97% 以上。测量结果与模拟结果相比,误差在 0.5% 以内。此外,还实现了对 Ic 的精确控制,根据磁带和堆叠规格量身定制,可根据需要控制衰减。这种堆叠 HTS 磁带的热处理工艺具有重要意义,尤其是在设计使用堆叠 HTS 磁带制造的电缆导管导体时。它为该领域的进一步发展提供了宝贵的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal degradation analysis and optimization of controlled heat treatment for stacked high temperature superconducting tapes
High temperature superconducting (HTS) tapes have crucial applications for generating high magnetic fields with minimal power input. Given a single tape has a limited current-carrying capacity, stacked tapes are common, fabricated through methods like solder soldering or epoxy impregnation requiring heat treatment. In this work, we have investigated the efficient region for vacuum heat treatment applicable of commercial HTS tapes, analysed the thermal degradation principles and accordingly proposed a controlled heat treatment process for stacked HTS tapes to achieve more precise regulation of the critical current ( Ic). This heat treatment process was explored using a specialized multi-temperature zone vacuum system. Critical parameters in this process include heat treatment temperature, duration and pressure on the tape. A series of experiments were conducted at 77 K in a self-field to investigate how these parameters affect the superconductivity performance of stacked HTS tapes. Based on the experimental results, an optimal heat treatment process has been proposed. Under the current process, with the heat treatment temperature set at 200 °C, duration at 20 min, and pressure on the tape at 12 MPa, the samples exhibit favourable properties characterized by a smooth and neat appearance without defects such as pinholes or false soldering, and the superconductivity performance can be consistently maintained at more than 97%. The obtained measurements were compared with simulated results, demonstrating an error margin within 0.5%. Moreover, precise control of Ic is achieved, tailored to tape and stacking specifications, allowing manageable degradation as required. This heat treatment process for stacked HTS tapes holds significant importance, especially in the context of designing cable-in-conduit conductors fabricated with stacked HTS tapes. It serves as a valuable reference for further advancements in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced mechanical strength and texture of (Ba,K)Fe2As2 Cu/Ag composite sheathed tapes with Nb barrier layer Natural width of the superconducting transition in epitaxial TiN films Kagome materials AV3Sb5 (A = K,Rb,Cs): pairing symmetry and pressure-tuning studies Stable implicit numerical algorithm of time-dependent Ginzburg–Landau theory coupled with thermal effect for vortex behaviors in hybrid superconductor systems From weak to strong-coupling superconductivity tuned by substrate in TiN films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1