A-15 型超导氢化物 La4H23:具有低应变、强电子-声子相互作用和中等程度非绝热性的纳米粒状结构

Evgeny F Talantsev, Vasiliy V Chistyakov
{"title":"A-15 型超导氢化物 La4H23:具有低应变、强电子-声子相互作用和中等程度非绝热性的纳米粒状结构","authors":"Evgeny F Talantsev, Vasiliy V Chistyakov","doi":"10.1088/1361-6668/ad637e","DOIUrl":null,"url":null,"abstract":"For seven decades, when referring to A-15 superconductors, we meant metallic A<sub>3</sub>B alloys (where A is a transition metal, and B is group IIIB and IVB elements) discovered by Hardy and Hulm (1953 <italic toggle=\"yes\">Phys. Rev.</italic> <bold>89</bold> 884). Nb<sub>3</sub>Ge exhibited the highest superconducting transition temperature, <italic toggle=\"yes\">T<sub>c</sub></italic> = 23K, among these alloys. One of these alloys, Nb<sub>3</sub>Sn, is the primary material in modern applied superconductivity. Recently, Guo <italic toggle=\"yes\">et al</italic> (2024 <italic toggle=\"yes\">Natl Sci. Rev.</italic> nwae149, <ext-link ext-link-type=\"uri\" xlink:href=\"https://doi.org/10.1093/nsr/nwae149\">https://doi.org/10.1093/nsr/nwae149</ext-link>) extended the family of superconductors where the metallic ions are arranged in the beta tungsten (A-15) sublattice by observation of <italic toggle=\"yes\">T<sub>c</sub></italic><sub>,zero</sub> = 81K in the La<sub>4</sub>H<sub>23</sub> phase compressed at <italic toggle=\"yes\">P</italic> = 118 GPa. Despite the fact that La<sub>4</sub>H<sub>23</sub> has much lower <italic toggle=\"yes\">T<sub>c</sub></italic> in comparison with the near-room-temperature superconducting LaH<sub>10</sub> phase (<italic toggle=\"yes\">T<sub>c</sub></italic><sub>,zero</sub> = 250K at <italic toggle=\"yes\">P</italic> ∼ 200 GPa) discovered by Drozdov <italic toggle=\"yes\">et al</italic> (2019 <italic toggle=\"yes\">Nature</italic> <bold>569</bold> 531), La<sub>4</sub>H<sub>23</sub> holds the record for the highest <italic toggle=\"yes\">T<sub>c</sub></italic> within the A-15 family. Cross <italic toggle=\"yes\">et al</italic> (2024 <italic toggle=\"yes\">Phys. Rev.</italic> B <bold>109</bold> L020503) confirmed the high-temperature superconductivity in compressed La<sub>4</sub>H<sub>23</sub>. In this paper, we analyzed available experimental data measured in La<sub>4</sub>H<sub>23</sub> and found that this superconductor exhibits a nanograined structure, 5.5 nm ⩽ <italic toggle=\"yes\">D</italic> ⩽ 35 nm, low crystalline strain, <inline-formula>\n<tex-math><?CDATA $\\left| {{\\varepsilon }} \\right|$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mrow><mml:mi>ε</mml:mi></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"sustad637eieqn1.gif\"></inline-graphic></inline-formula> ⩽ 0.003, strong electron–phonon interaction, 1.5 ⩽ λ<sub>e-ph</sub>⩽ 2.55, and a moderate level of nonadiabaticity, 0.18 ⩽ Θ<italic toggle=\"yes\"><sub>D</sub></italic>/<italic toggle=\"yes\">T</italic><sub>F</sub> ⩽ 0.22 (where Θ<italic toggle=\"yes\"><sub>D</sub></italic> is the Debye temperature, and <italic toggle=\"yes\">T</italic><sub>F</sub> is the Fermi temperature). We found that the derived Θ<italic toggle=\"yes\"><sub>D</sub></italic>/<italic toggle=\"yes\">T</italic><sub>F</sub> and <italic toggle=\"yes\">T<sub>c</sub></italic>/<italic toggle=\"yes\">T</italic><sub>F</sub> values for the La<sub>4</sub>H<sub>23</sub> phase are similar to those in MgB<sub>2</sub>, cuprates, pnictides, and the near-room-temperature superconductors H<sub>3</sub>S and LaH<sub>10</sub>.<italic toggle=\"yes\"><bold>To the memory of Martin J. Ryan, man and scientist who taught EFT the intricacies of X-ray diffraction.</bold></italic>","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"102 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The A-15-type superconducting hydride La4H23: a nanograined structure with low strain, strong electron-phonon interaction, and a moderate level of nonadiabaticity\",\"authors\":\"Evgeny F Talantsev, Vasiliy V Chistyakov\",\"doi\":\"10.1088/1361-6668/ad637e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For seven decades, when referring to A-15 superconductors, we meant metallic A<sub>3</sub>B alloys (where A is a transition metal, and B is group IIIB and IVB elements) discovered by Hardy and Hulm (1953 <italic toggle=\\\"yes\\\">Phys. Rev.</italic> <bold>89</bold> 884). Nb<sub>3</sub>Ge exhibited the highest superconducting transition temperature, <italic toggle=\\\"yes\\\">T<sub>c</sub></italic> = 23K, among these alloys. One of these alloys, Nb<sub>3</sub>Sn, is the primary material in modern applied superconductivity. Recently, Guo <italic toggle=\\\"yes\\\">et al</italic> (2024 <italic toggle=\\\"yes\\\">Natl Sci. Rev.</italic> nwae149, <ext-link ext-link-type=\\\"uri\\\" xlink:href=\\\"https://doi.org/10.1093/nsr/nwae149\\\">https://doi.org/10.1093/nsr/nwae149</ext-link>) extended the family of superconductors where the metallic ions are arranged in the beta tungsten (A-15) sublattice by observation of <italic toggle=\\\"yes\\\">T<sub>c</sub></italic><sub>,zero</sub> = 81K in the La<sub>4</sub>H<sub>23</sub> phase compressed at <italic toggle=\\\"yes\\\">P</italic> = 118 GPa. Despite the fact that La<sub>4</sub>H<sub>23</sub> has much lower <italic toggle=\\\"yes\\\">T<sub>c</sub></italic> in comparison with the near-room-temperature superconducting LaH<sub>10</sub> phase (<italic toggle=\\\"yes\\\">T<sub>c</sub></italic><sub>,zero</sub> = 250K at <italic toggle=\\\"yes\\\">P</italic> ∼ 200 GPa) discovered by Drozdov <italic toggle=\\\"yes\\\">et al</italic> (2019 <italic toggle=\\\"yes\\\">Nature</italic> <bold>569</bold> 531), La<sub>4</sub>H<sub>23</sub> holds the record for the highest <italic toggle=\\\"yes\\\">T<sub>c</sub></italic> within the A-15 family. Cross <italic toggle=\\\"yes\\\">et al</italic> (2024 <italic toggle=\\\"yes\\\">Phys. Rev.</italic> B <bold>109</bold> L020503) confirmed the high-temperature superconductivity in compressed La<sub>4</sub>H<sub>23</sub>. In this paper, we analyzed available experimental data measured in La<sub>4</sub>H<sub>23</sub> and found that this superconductor exhibits a nanograined structure, 5.5 nm ⩽ <italic toggle=\\\"yes\\\">D</italic> ⩽ 35 nm, low crystalline strain, <inline-formula>\\n<tex-math><?CDATA $\\\\left| {{\\\\varepsilon }} \\\\right|$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mrow><mml:mi>ε</mml:mi></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\\\"sustad637eieqn1.gif\\\"></inline-graphic></inline-formula> ⩽ 0.003, strong electron–phonon interaction, 1.5 ⩽ λ<sub>e-ph</sub>⩽ 2.55, and a moderate level of nonadiabaticity, 0.18 ⩽ Θ<italic toggle=\\\"yes\\\"><sub>D</sub></italic>/<italic toggle=\\\"yes\\\">T</italic><sub>F</sub> ⩽ 0.22 (where Θ<italic toggle=\\\"yes\\\"><sub>D</sub></italic> is the Debye temperature, and <italic toggle=\\\"yes\\\">T</italic><sub>F</sub> is the Fermi temperature). We found that the derived Θ<italic toggle=\\\"yes\\\"><sub>D</sub></italic>/<italic toggle=\\\"yes\\\">T</italic><sub>F</sub> and <italic toggle=\\\"yes\\\">T<sub>c</sub></italic>/<italic toggle=\\\"yes\\\">T</italic><sub>F</sub> values for the La<sub>4</sub>H<sub>23</sub> phase are similar to those in MgB<sub>2</sub>, cuprates, pnictides, and the near-room-temperature superconductors H<sub>3</sub>S and LaH<sub>10</sub>.<italic toggle=\\\"yes\\\"><bold>To the memory of Martin J. Ryan, man and scientist who taught EFT the intricacies of X-ray diffraction.</bold></italic>\",\"PeriodicalId\":21985,\"journal\":{\"name\":\"Superconductor Science and Technology\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/ad637e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad637e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

七十年来,当提到 A-15 超导体时,我们指的是 Hardy 和 Hulm(1953 年《物理评论》第 89 884 期)发现的金属 A3B 合金(其中 A 是过渡金属,B 是 IIIB 族和 IVB 族元素)。在这些合金中,Nb3Ge 的超导转变温度最高,为 Tc = 23K。其中一种合金 Nb3Sn 是现代应用超导的主要材料。最近,Guo 等人 (2024 Natl Sci. Rev. nwae149, https://doi.org/10.1093/nsr/nwae149) 通过观察在 P = 118 GPa 条件下压缩的 La4H23 相的 Tc,zero = 81K,扩展了金属离子排列在β钨(A-15)亚晶格中的超导体家族。尽管与 Drozdov 等人(2019 年《自然》杂志 569 531 期)发现的接近室温的超导 LaH10 相(P ∼ 200 GPa 时的 Tc,zero = 250K)相比,La4H23 的 Tc 值低得多,但 La4H23 仍保持着 A-15 系列中最高的 Tc 值记录。Cross 等人(2024 Phys.在本文中,我们分析了在 La4H23 中测量到的现有实验数据,发现这种超导体呈现出纳米粒状结构(5.5 nm ⩽ D ⩽ 35 nm)、低晶体应变(|ε| ⩽ 0.003,强电子-声子相互作用,1.5 ⩽ λe-ph⩽ 2.55,以及中等程度的非绝热性,0.18 ⩽ ΘD/TF ⩽ 0.22(其中 ΘD 为德拜温度,TF 为费米温度)。我们发现,得出的 La4H23 相的ΘD/TF 和 Tc/TF 值与 MgB2、铜酸盐、黝帘石以及近室温超导体 H3S 和 LaH10 中的值相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The A-15-type superconducting hydride La4H23: a nanograined structure with low strain, strong electron-phonon interaction, and a moderate level of nonadiabaticity
For seven decades, when referring to A-15 superconductors, we meant metallic A3B alloys (where A is a transition metal, and B is group IIIB and IVB elements) discovered by Hardy and Hulm (1953 Phys. Rev. 89 884). Nb3Ge exhibited the highest superconducting transition temperature, Tc = 23K, among these alloys. One of these alloys, Nb3Sn, is the primary material in modern applied superconductivity. Recently, Guo et al (2024 Natl Sci. Rev. nwae149, https://doi.org/10.1093/nsr/nwae149) extended the family of superconductors where the metallic ions are arranged in the beta tungsten (A-15) sublattice by observation of Tc,zero = 81K in the La4H23 phase compressed at P = 118 GPa. Despite the fact that La4H23 has much lower Tc in comparison with the near-room-temperature superconducting LaH10 phase (Tc,zero = 250K at P ∼ 200 GPa) discovered by Drozdov et al (2019 Nature 569 531), La4H23 holds the record for the highest Tc within the A-15 family. Cross et al (2024 Phys. Rev. B 109 L020503) confirmed the high-temperature superconductivity in compressed La4H23. In this paper, we analyzed available experimental data measured in La4H23 and found that this superconductor exhibits a nanograined structure, 5.5 nm ⩽ D ⩽ 35 nm, low crystalline strain, |ε| ⩽ 0.003, strong electron–phonon interaction, 1.5 ⩽ λe-ph⩽ 2.55, and a moderate level of nonadiabaticity, 0.18 ⩽ ΘD/TF ⩽ 0.22 (where ΘD is the Debye temperature, and TF is the Fermi temperature). We found that the derived ΘD/TF and Tc/TF values for the La4H23 phase are similar to those in MgB2, cuprates, pnictides, and the near-room-temperature superconductors H3S and LaH10.To the memory of Martin J. Ryan, man and scientist who taught EFT the intricacies of X-ray diffraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced mechanical strength and texture of (Ba,K)Fe2As2 Cu/Ag composite sheathed tapes with Nb barrier layer Natural width of the superconducting transition in epitaxial TiN films Kagome materials AV3Sb5 (A = K,Rb,Cs): pairing symmetry and pressure-tuning studies Stable implicit numerical algorithm of time-dependent Ginzburg–Landau theory coupled with thermal effect for vortex behaviors in hybrid superconductor systems From weak to strong-coupling superconductivity tuned by substrate in TiN films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1