{"title":"A-15 型超导氢化物 La4H23:具有低应变、强电子-声子相互作用和中等程度非绝热性的纳米粒状结构","authors":"Evgeny F Talantsev, Vasiliy V Chistyakov","doi":"10.1088/1361-6668/ad637e","DOIUrl":null,"url":null,"abstract":"For seven decades, when referring to A-15 superconductors, we meant metallic A<sub>3</sub>B alloys (where A is a transition metal, and B is group IIIB and IVB elements) discovered by Hardy and Hulm (1953 <italic toggle=\"yes\">Phys. Rev.</italic> <bold>89</bold> 884). Nb<sub>3</sub>Ge exhibited the highest superconducting transition temperature, <italic toggle=\"yes\">T<sub>c</sub></italic> = 23K, among these alloys. One of these alloys, Nb<sub>3</sub>Sn, is the primary material in modern applied superconductivity. Recently, Guo <italic toggle=\"yes\">et al</italic> (2024 <italic toggle=\"yes\">Natl Sci. Rev.</italic> nwae149, <ext-link ext-link-type=\"uri\" xlink:href=\"https://doi.org/10.1093/nsr/nwae149\">https://doi.org/10.1093/nsr/nwae149</ext-link>) extended the family of superconductors where the metallic ions are arranged in the beta tungsten (A-15) sublattice by observation of <italic toggle=\"yes\">T<sub>c</sub></italic><sub>,zero</sub> = 81K in the La<sub>4</sub>H<sub>23</sub> phase compressed at <italic toggle=\"yes\">P</italic> = 118 GPa. Despite the fact that La<sub>4</sub>H<sub>23</sub> has much lower <italic toggle=\"yes\">T<sub>c</sub></italic> in comparison with the near-room-temperature superconducting LaH<sub>10</sub> phase (<italic toggle=\"yes\">T<sub>c</sub></italic><sub>,zero</sub> = 250K at <italic toggle=\"yes\">P</italic> ∼ 200 GPa) discovered by Drozdov <italic toggle=\"yes\">et al</italic> (2019 <italic toggle=\"yes\">Nature</italic> <bold>569</bold> 531), La<sub>4</sub>H<sub>23</sub> holds the record for the highest <italic toggle=\"yes\">T<sub>c</sub></italic> within the A-15 family. Cross <italic toggle=\"yes\">et al</italic> (2024 <italic toggle=\"yes\">Phys. Rev.</italic> B <bold>109</bold> L020503) confirmed the high-temperature superconductivity in compressed La<sub>4</sub>H<sub>23</sub>. In this paper, we analyzed available experimental data measured in La<sub>4</sub>H<sub>23</sub> and found that this superconductor exhibits a nanograined structure, 5.5 nm ⩽ <italic toggle=\"yes\">D</italic> ⩽ 35 nm, low crystalline strain, <inline-formula>\n<tex-math><?CDATA $\\left| {{\\varepsilon }} \\right|$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mrow><mml:mi>ε</mml:mi></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"sustad637eieqn1.gif\"></inline-graphic></inline-formula> ⩽ 0.003, strong electron–phonon interaction, 1.5 ⩽ λ<sub>e-ph</sub>⩽ 2.55, and a moderate level of nonadiabaticity, 0.18 ⩽ Θ<italic toggle=\"yes\"><sub>D</sub></italic>/<italic toggle=\"yes\">T</italic><sub>F</sub> ⩽ 0.22 (where Θ<italic toggle=\"yes\"><sub>D</sub></italic> is the Debye temperature, and <italic toggle=\"yes\">T</italic><sub>F</sub> is the Fermi temperature). We found that the derived Θ<italic toggle=\"yes\"><sub>D</sub></italic>/<italic toggle=\"yes\">T</italic><sub>F</sub> and <italic toggle=\"yes\">T<sub>c</sub></italic>/<italic toggle=\"yes\">T</italic><sub>F</sub> values for the La<sub>4</sub>H<sub>23</sub> phase are similar to those in MgB<sub>2</sub>, cuprates, pnictides, and the near-room-temperature superconductors H<sub>3</sub>S and LaH<sub>10</sub>.<italic toggle=\"yes\"><bold>To the memory of Martin J. Ryan, man and scientist who taught EFT the intricacies of X-ray diffraction.</bold></italic>","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"102 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The A-15-type superconducting hydride La4H23: a nanograined structure with low strain, strong electron-phonon interaction, and a moderate level of nonadiabaticity\",\"authors\":\"Evgeny F Talantsev, Vasiliy V Chistyakov\",\"doi\":\"10.1088/1361-6668/ad637e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For seven decades, when referring to A-15 superconductors, we meant metallic A<sub>3</sub>B alloys (where A is a transition metal, and B is group IIIB and IVB elements) discovered by Hardy and Hulm (1953 <italic toggle=\\\"yes\\\">Phys. Rev.</italic> <bold>89</bold> 884). Nb<sub>3</sub>Ge exhibited the highest superconducting transition temperature, <italic toggle=\\\"yes\\\">T<sub>c</sub></italic> = 23K, among these alloys. One of these alloys, Nb<sub>3</sub>Sn, is the primary material in modern applied superconductivity. Recently, Guo <italic toggle=\\\"yes\\\">et al</italic> (2024 <italic toggle=\\\"yes\\\">Natl Sci. Rev.</italic> nwae149, <ext-link ext-link-type=\\\"uri\\\" xlink:href=\\\"https://doi.org/10.1093/nsr/nwae149\\\">https://doi.org/10.1093/nsr/nwae149</ext-link>) extended the family of superconductors where the metallic ions are arranged in the beta tungsten (A-15) sublattice by observation of <italic toggle=\\\"yes\\\">T<sub>c</sub></italic><sub>,zero</sub> = 81K in the La<sub>4</sub>H<sub>23</sub> phase compressed at <italic toggle=\\\"yes\\\">P</italic> = 118 GPa. Despite the fact that La<sub>4</sub>H<sub>23</sub> has much lower <italic toggle=\\\"yes\\\">T<sub>c</sub></italic> in comparison with the near-room-temperature superconducting LaH<sub>10</sub> phase (<italic toggle=\\\"yes\\\">T<sub>c</sub></italic><sub>,zero</sub> = 250K at <italic toggle=\\\"yes\\\">P</italic> ∼ 200 GPa) discovered by Drozdov <italic toggle=\\\"yes\\\">et al</italic> (2019 <italic toggle=\\\"yes\\\">Nature</italic> <bold>569</bold> 531), La<sub>4</sub>H<sub>23</sub> holds the record for the highest <italic toggle=\\\"yes\\\">T<sub>c</sub></italic> within the A-15 family. Cross <italic toggle=\\\"yes\\\">et al</italic> (2024 <italic toggle=\\\"yes\\\">Phys. Rev.</italic> B <bold>109</bold> L020503) confirmed the high-temperature superconductivity in compressed La<sub>4</sub>H<sub>23</sub>. In this paper, we analyzed available experimental data measured in La<sub>4</sub>H<sub>23</sub> and found that this superconductor exhibits a nanograined structure, 5.5 nm ⩽ <italic toggle=\\\"yes\\\">D</italic> ⩽ 35 nm, low crystalline strain, <inline-formula>\\n<tex-math><?CDATA $\\\\left| {{\\\\varepsilon }} \\\\right|$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mrow><mml:mi>ε</mml:mi></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\\\"sustad637eieqn1.gif\\\"></inline-graphic></inline-formula> ⩽ 0.003, strong electron–phonon interaction, 1.5 ⩽ λ<sub>e-ph</sub>⩽ 2.55, and a moderate level of nonadiabaticity, 0.18 ⩽ Θ<italic toggle=\\\"yes\\\"><sub>D</sub></italic>/<italic toggle=\\\"yes\\\">T</italic><sub>F</sub> ⩽ 0.22 (where Θ<italic toggle=\\\"yes\\\"><sub>D</sub></italic> is the Debye temperature, and <italic toggle=\\\"yes\\\">T</italic><sub>F</sub> is the Fermi temperature). We found that the derived Θ<italic toggle=\\\"yes\\\"><sub>D</sub></italic>/<italic toggle=\\\"yes\\\">T</italic><sub>F</sub> and <italic toggle=\\\"yes\\\">T<sub>c</sub></italic>/<italic toggle=\\\"yes\\\">T</italic><sub>F</sub> values for the La<sub>4</sub>H<sub>23</sub> phase are similar to those in MgB<sub>2</sub>, cuprates, pnictides, and the near-room-temperature superconductors H<sub>3</sub>S and LaH<sub>10</sub>.<italic toggle=\\\"yes\\\"><bold>To the memory of Martin J. Ryan, man and scientist who taught EFT the intricacies of X-ray diffraction.</bold></italic>\",\"PeriodicalId\":21985,\"journal\":{\"name\":\"Superconductor Science and Technology\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/ad637e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad637e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The A-15-type superconducting hydride La4H23: a nanograined structure with low strain, strong electron-phonon interaction, and a moderate level of nonadiabaticity
For seven decades, when referring to A-15 superconductors, we meant metallic A3B alloys (where A is a transition metal, and B is group IIIB and IVB elements) discovered by Hardy and Hulm (1953 Phys. Rev.89 884). Nb3Ge exhibited the highest superconducting transition temperature, Tc = 23K, among these alloys. One of these alloys, Nb3Sn, is the primary material in modern applied superconductivity. Recently, Guo et al (2024 Natl Sci. Rev. nwae149, https://doi.org/10.1093/nsr/nwae149) extended the family of superconductors where the metallic ions are arranged in the beta tungsten (A-15) sublattice by observation of Tc,zero = 81K in the La4H23 phase compressed at P = 118 GPa. Despite the fact that La4H23 has much lower Tc in comparison with the near-room-temperature superconducting LaH10 phase (Tc,zero = 250K at P ∼ 200 GPa) discovered by Drozdov et al (2019 Nature569 531), La4H23 holds the record for the highest Tc within the A-15 family. Cross et al (2024 Phys. Rev. B 109 L020503) confirmed the high-temperature superconductivity in compressed La4H23. In this paper, we analyzed available experimental data measured in La4H23 and found that this superconductor exhibits a nanograined structure, 5.5 nm ⩽ D ⩽ 35 nm, low crystalline strain, |ε| ⩽ 0.003, strong electron–phonon interaction, 1.5 ⩽ λe-ph⩽ 2.55, and a moderate level of nonadiabaticity, 0.18 ⩽ ΘD/TF ⩽ 0.22 (where ΘD is the Debye temperature, and TF is the Fermi temperature). We found that the derived ΘD/TF and Tc/TF values for the La4H23 phase are similar to those in MgB2, cuprates, pnictides, and the near-room-temperature superconductors H3S and LaH10.To the memory of Martin J. Ryan, man and scientist who taught EFT the intricacies of X-ray diffraction.