K过量对(Ba0.6K0.4)Fe2As2超导粉体微观结构的影响

Emilio Bellingeri, Cristina Bernini, Federico Loria, Andrea Traverso, Alessandro Leveratto, Valeria Braccini, Amalia Ballarino, Andrea Malagoli
{"title":"K过量对(Ba0.6K0.4)Fe2As2超导粉体微观结构的影响","authors":"Emilio Bellingeri, Cristina Bernini, Federico Loria, Andrea Traverso, Alessandro Leveratto, Valeria Braccini, Amalia Ballarino, Andrea Malagoli","doi":"10.1088/1361-6668/ad68d4","DOIUrl":null,"url":null,"abstract":"Iron-based superconductors (IBSs) are promising for high-field applications due to their exceptional characteristics, like ultrahigh upper critical field and minimal electromagnetic anisotropy. Creating multifilamentary superconducting wires with elevated transport critical current density is essential for practical use. The Powder in Tube (PIT) technique is commonly used for this purpose, but achieving optimal results requires careful exploration of powder microstructural properties. This is particularly crucial for superconductors like (Ba,K)122, the IBS most promising from an applicative point of view, where factors such as reactivity, volatility, and toxicity of constituent elements affect phase formation. Potassium volatility often leads to nonstoichiometric conditions, introducing excess potassium in the formulation. This study focuses on the impact of potassium excess <italic toggle=\"yes\">δ</italic> on the microstructural properties of the ‘optimally doped’ (Ba<sub>0.6</sub>K<sub>0.4+<italic toggle=\"yes\">δ</italic></sub>)Fe<sub>2</sub>As<sub>2</sub> phase (0 ⩽ <italic toggle=\"yes\">δ</italic> ⩽ 0.08). Using techniques like Scanning Electron Microscopy, x-ray diffraction, and temperature-dependent magnetization measurements, we demonstrate the ability to produce nearly pure powders of the superconducting phase with controlled grain size. Our findings are relevant for PIT wire fabrication, where grain size strongly affects mechanical deformation. Grain size also influences transport properties, as observed in previous studies, where reducing grain size enhanced current-carrying capability at high magnetic fields.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of K excess in microstructure of (Ba0.6K0.4)Fe2As2 superconducting powders\",\"authors\":\"Emilio Bellingeri, Cristina Bernini, Federico Loria, Andrea Traverso, Alessandro Leveratto, Valeria Braccini, Amalia Ballarino, Andrea Malagoli\",\"doi\":\"10.1088/1361-6668/ad68d4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron-based superconductors (IBSs) are promising for high-field applications due to their exceptional characteristics, like ultrahigh upper critical field and minimal electromagnetic anisotropy. Creating multifilamentary superconducting wires with elevated transport critical current density is essential for practical use. The Powder in Tube (PIT) technique is commonly used for this purpose, but achieving optimal results requires careful exploration of powder microstructural properties. This is particularly crucial for superconductors like (Ba,K)122, the IBS most promising from an applicative point of view, where factors such as reactivity, volatility, and toxicity of constituent elements affect phase formation. Potassium volatility often leads to nonstoichiometric conditions, introducing excess potassium in the formulation. This study focuses on the impact of potassium excess <italic toggle=\\\"yes\\\">δ</italic> on the microstructural properties of the ‘optimally doped’ (Ba<sub>0.6</sub>K<sub>0.4+<italic toggle=\\\"yes\\\">δ</italic></sub>)Fe<sub>2</sub>As<sub>2</sub> phase (0 ⩽ <italic toggle=\\\"yes\\\">δ</italic> ⩽ 0.08). Using techniques like Scanning Electron Microscopy, x-ray diffraction, and temperature-dependent magnetization measurements, we demonstrate the ability to produce nearly pure powders of the superconducting phase with controlled grain size. Our findings are relevant for PIT wire fabrication, where grain size strongly affects mechanical deformation. Grain size also influences transport properties, as observed in previous studies, where reducing grain size enhanced current-carrying capability at high magnetic fields.\",\"PeriodicalId\":21985,\"journal\":{\"name\":\"Superconductor Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/ad68d4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad68d4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铁基超导体(IBS)具有超高上临界磁场和最小电磁各向异性等优异特性,因此在高磁场应用中大有可为。制造具有较高传输临界电流密度的多丝超导线材对于实际应用至关重要。管内粉末(PIT)技术通常用于此目的,但要获得最佳效果,需要仔细研究粉末的微观结构特性。这对于像 (Ba,K)122(从应用角度来看最有前途的 IBS)这样的超导体尤为重要,因为在这种超导体中,组成元素的反应性、挥发性和毒性等因素会影响相的形成。钾的挥发性通常会导致非化学计量条件,在配方中引入过量的钾。本研究的重点是钾过量 δ 对 "最佳掺杂"(Ba0.6K0.4+δ)Fe2As2 相(0 ⩽ δ ⩽ 0.08)微观结构特性的影响。利用扫描电子显微镜、X 射线衍射和随温度变化的磁化测量等技术,我们证明了生产晶粒大小可控的近乎纯净的超导相粉末的能力。我们的研究结果与 PIT 线制造相关,因为晶粒大小对机械变形有很大影响。晶粒大小也会影响传输特性,正如之前的研究中所观察到的,减小晶粒大小会增强高磁场下的载流能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of K excess in microstructure of (Ba0.6K0.4)Fe2As2 superconducting powders
Iron-based superconductors (IBSs) are promising for high-field applications due to their exceptional characteristics, like ultrahigh upper critical field and minimal electromagnetic anisotropy. Creating multifilamentary superconducting wires with elevated transport critical current density is essential for practical use. The Powder in Tube (PIT) technique is commonly used for this purpose, but achieving optimal results requires careful exploration of powder microstructural properties. This is particularly crucial for superconductors like (Ba,K)122, the IBS most promising from an applicative point of view, where factors such as reactivity, volatility, and toxicity of constituent elements affect phase formation. Potassium volatility often leads to nonstoichiometric conditions, introducing excess potassium in the formulation. This study focuses on the impact of potassium excess δ on the microstructural properties of the ‘optimally doped’ (Ba0.6K0.4+δ)Fe2As2 phase (0 ⩽ δ ⩽ 0.08). Using techniques like Scanning Electron Microscopy, x-ray diffraction, and temperature-dependent magnetization measurements, we demonstrate the ability to produce nearly pure powders of the superconducting phase with controlled grain size. Our findings are relevant for PIT wire fabrication, where grain size strongly affects mechanical deformation. Grain size also influences transport properties, as observed in previous studies, where reducing grain size enhanced current-carrying capability at high magnetic fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced mechanical strength and texture of (Ba,K)Fe2As2 Cu/Ag composite sheathed tapes with Nb barrier layer Natural width of the superconducting transition in epitaxial TiN films Kagome materials AV3Sb5 (A = K,Rb,Cs): pairing symmetry and pressure-tuning studies Stable implicit numerical algorithm of time-dependent Ginzburg–Landau theory coupled with thermal effect for vortex behaviors in hybrid superconductor systems From weak to strong-coupling superconductivity tuned by substrate in TiN films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1