Yanli Wu, Xinyu Chen, Ling Liu, Suang Jiang, Ling Xia, Dan Li, Guangrun Wu, Zhongqi Sun, Zhe Zhang, Yang Li
{"title":"低温基底:基于表面增强拉曼光谱检测冷链食品包装上的病毒","authors":"Yanli Wu, Xinyu Chen, Ling Liu, Suang Jiang, Ling Xia, Dan Li, Guangrun Wu, Zhongqi Sun, Zhe Zhang, Yang Li","doi":"10.1021/acsmaterialslett.4c00948","DOIUrl":null,"url":null,"abstract":"Viruses are mostly resistant to low temperatures and can survive for a long time and maintain their infectivity at temperatures below 0 °C. Therefore, realizing virus detection at low temperatures is a great challenge. Subzero temperatures change the state of the water-soluble substrate, increasing the difficulty of detection. In this work, we designed a novel enhancement substrate to obtain SERS signals of biomolecules stably at low temperatures. For the first time, methanol solvent was introduced into the aqueous system of silver nanoparticles modified with iodide ions. The introduction of methanol solvent not only serves as an anticoagulant to keep the system stable at low temperatures, but it can also improve nanoparticles and form a “hot spot”, which is more suitable for virus detection. This low-toxicity, rapid, and highly sensitive in situ detection technique lays the foundation for the development of SERS technology in the field of food and life sciences.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Temperature Substrate: Detection of Viruses on Cold Chain Food Packaging Based on Surface-Enhanced Raman Spectroscopy\",\"authors\":\"Yanli Wu, Xinyu Chen, Ling Liu, Suang Jiang, Ling Xia, Dan Li, Guangrun Wu, Zhongqi Sun, Zhe Zhang, Yang Li\",\"doi\":\"10.1021/acsmaterialslett.4c00948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viruses are mostly resistant to low temperatures and can survive for a long time and maintain their infectivity at temperatures below 0 °C. Therefore, realizing virus detection at low temperatures is a great challenge. Subzero temperatures change the state of the water-soluble substrate, increasing the difficulty of detection. In this work, we designed a novel enhancement substrate to obtain SERS signals of biomolecules stably at low temperatures. For the first time, methanol solvent was introduced into the aqueous system of silver nanoparticles modified with iodide ions. The introduction of methanol solvent not only serves as an anticoagulant to keep the system stable at low temperatures, but it can also improve nanoparticles and form a “hot spot”, which is more suitable for virus detection. This low-toxicity, rapid, and highly sensitive in situ detection technique lays the foundation for the development of SERS technology in the field of food and life sciences.\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmaterialslett.4c00948\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c00948","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
病毒大多对低温有抵抗力,在 0 °C 以下的温度下可以存活很长时间并保持感染力。因此,在低温条件下实现病毒检测是一项巨大的挑战。零下温度会改变水溶性底物的状态,增加检测难度。在这项工作中,我们设计了一种新型的增强底物,可以在低温下稳定地获得生物分子的 SERS 信号。我们首次将甲醇溶剂引入碘离子修饰的银纳米粒子的水体系中。甲醇溶剂的引入不仅能起到抗凝剂的作用,使体系在低温下保持稳定,还能改善纳米粒子,形成 "热点",更适合病毒检测。这种低毒、快速、高灵敏度的原位检测技术为 SERS 技术在食品和生命科学领域的发展奠定了基础。
Low-Temperature Substrate: Detection of Viruses on Cold Chain Food Packaging Based on Surface-Enhanced Raman Spectroscopy
Viruses are mostly resistant to low temperatures and can survive for a long time and maintain their infectivity at temperatures below 0 °C. Therefore, realizing virus detection at low temperatures is a great challenge. Subzero temperatures change the state of the water-soluble substrate, increasing the difficulty of detection. In this work, we designed a novel enhancement substrate to obtain SERS signals of biomolecules stably at low temperatures. For the first time, methanol solvent was introduced into the aqueous system of silver nanoparticles modified with iodide ions. The introduction of methanol solvent not only serves as an anticoagulant to keep the system stable at low temperatures, but it can also improve nanoparticles and form a “hot spot”, which is more suitable for virus detection. This low-toxicity, rapid, and highly sensitive in situ detection technique lays the foundation for the development of SERS technology in the field of food and life sciences.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.