Huan Shen
(, ), Peng Shi
(, ), Ergang Liu
(, ), Yuefei Fang
(, ), Shijie Xu
(, ), Junbo Gong
(, ), Yongzhuo Huang
(, )
{"title":"聚合引起的淬火到结晶诱导的发射转变:具有可调热致变色的姜黄素晶体中的水合诱导发光,用于体内追踪","authors":"Huan Shen \n (, ), Peng Shi \n (, ), Ergang Liu \n (, ), Yuefei Fang \n (, ), Shijie Xu \n (, ), Junbo Gong \n (, ), Yongzhuo Huang \n (, )","doi":"10.1007/s40843-024-3049-1","DOIUrl":null,"url":null,"abstract":"<div><p>The development of solid-state materials with switchable luminescence in response to stimuli remains a challenge, especially for organic materials. While crystal water significantly impacts the absorption spectra of organic crystals, it is unclear whether the emission spectra of organic luminescent materials can be systematically manipulated by water. In this study, we successfully obtained curcumin monohydrate (Form X), a channel-type hydrate exhibiting crystallization-induced emission (CIE) at 608 nm (orange fluorescence), which contrasted with the conventional forms of aggregation-caused quenching (ACQ). Thermal treatment induced the release of hydration water, resulting in a new anhydrate (Form IV) that emitted yellow-green fluorescence with the emission peak at 575 nm. Additionally, this approach can be used to track the absorption of curcumin crystals following subcutaneous or intramuscular delivery. The hydratemediated single-crystal-to-single-crystal transition (SCSC) and its associated luminescence transition were reversible and responsive to temperature, offering a green approach for synthesizing and designing aggregation-induced-emission (AIE)-based intelligent luminescent devices for detecting air humidity or drug absorption.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3561 - 3569"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aggregation-caused quenching to crystallization-induced emission transformation: hydration-induced luminescence in crystal curcumin with tunable thermochromism for in vivo tracking\",\"authors\":\"Huan Shen \\n (, ), Peng Shi \\n (, ), Ergang Liu \\n (, ), Yuefei Fang \\n (, ), Shijie Xu \\n (, ), Junbo Gong \\n (, ), Yongzhuo Huang \\n (, )\",\"doi\":\"10.1007/s40843-024-3049-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of solid-state materials with switchable luminescence in response to stimuli remains a challenge, especially for organic materials. While crystal water significantly impacts the absorption spectra of organic crystals, it is unclear whether the emission spectra of organic luminescent materials can be systematically manipulated by water. In this study, we successfully obtained curcumin monohydrate (Form X), a channel-type hydrate exhibiting crystallization-induced emission (CIE) at 608 nm (orange fluorescence), which contrasted with the conventional forms of aggregation-caused quenching (ACQ). Thermal treatment induced the release of hydration water, resulting in a new anhydrate (Form IV) that emitted yellow-green fluorescence with the emission peak at 575 nm. Additionally, this approach can be used to track the absorption of curcumin crystals following subcutaneous or intramuscular delivery. The hydratemediated single-crystal-to-single-crystal transition (SCSC) and its associated luminescence transition were reversible and responsive to temperature, offering a green approach for synthesizing and designing aggregation-induced-emission (AIE)-based intelligent luminescent devices for detecting air humidity or drug absorption.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 11\",\"pages\":\"3561 - 3569\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3049-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3049-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Aggregation-caused quenching to crystallization-induced emission transformation: hydration-induced luminescence in crystal curcumin with tunable thermochromism for in vivo tracking
The development of solid-state materials with switchable luminescence in response to stimuli remains a challenge, especially for organic materials. While crystal water significantly impacts the absorption spectra of organic crystals, it is unclear whether the emission spectra of organic luminescent materials can be systematically manipulated by water. In this study, we successfully obtained curcumin monohydrate (Form X), a channel-type hydrate exhibiting crystallization-induced emission (CIE) at 608 nm (orange fluorescence), which contrasted with the conventional forms of aggregation-caused quenching (ACQ). Thermal treatment induced the release of hydration water, resulting in a new anhydrate (Form IV) that emitted yellow-green fluorescence with the emission peak at 575 nm. Additionally, this approach can be used to track the absorption of curcumin crystals following subcutaneous or intramuscular delivery. The hydratemediated single-crystal-to-single-crystal transition (SCSC) and its associated luminescence transition were reversible and responsive to temperature, offering a green approach for synthesizing and designing aggregation-induced-emission (AIE)-based intelligent luminescent devices for detecting air humidity or drug absorption.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.