在氧化镍中掺入无机铵盐以制造高效平面过氧化物太阳能电池

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-09-09 DOI:10.1007/s12598-024-02984-3
Rui-Chen Song, Jian-Ming Yang, Li-Fang Wu, Hong-Yu Li, Zhi-Xin Yang, Zhe-Hao Wang, Zhi-Fang Wu, Alexey B. Tarasov, Sardor Donaev, Chang Xue, Sheng-Hao Wang
{"title":"在氧化镍中掺入无机铵盐以制造高效平面过氧化物太阳能电池","authors":"Rui-Chen Song, Jian-Ming Yang, Li-Fang Wu, Hong-Yu Li, Zhi-Xin Yang, Zhe-Hao Wang, Zhi-Fang Wu, Alexey B. Tarasov, Sardor Donaev, Chang Xue, Sheng-Hao Wang","doi":"10.1007/s12598-024-02984-3","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Inverted perovskite solar cells (PSCs) have stood out in recent years for their great potential in offering low-temperature compatibility, long-term stability and tandem cell suitability. However, challenges persist, particularly concerning the use of nickel oxide nanoparticles (NiO<sub><i>x</i></sub> NPs) as the hole transport material, where issues such as low conductivity, impurity-induced aggregation and interface redox reactions significantly hinder device performance. In response, this study presents a novel synthesis method for NiO<sub><i>x</i></sub> NPs, leveraging the introduction of ammonium salt dopants (NH<sub>4</sub>Cl and NH<sub>4</sub>SCN), and the solar cell utilizing the doped NiO<sub><i>x</i></sub> substrate exhibits much enhanced device performance. Furthermore, doped solar cells reach 23.27% power conversion efficiency (PCE) when a self-assembled monolayer (SAM) is further employed. This study provides critical insights into the synthesis and growth pathways of NiO<sub><i>x</i></sub> NPs, propelling the development of efficient hole transport materials for high-performance PSCs.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inorganic ammonium salt doping in nickel oxide for highly efficient planar perovskite solar cells\",\"authors\":\"Rui-Chen Song, Jian-Ming Yang, Li-Fang Wu, Hong-Yu Li, Zhi-Xin Yang, Zhe-Hao Wang, Zhi-Fang Wu, Alexey B. Tarasov, Sardor Donaev, Chang Xue, Sheng-Hao Wang\",\"doi\":\"10.1007/s12598-024-02984-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Inverted perovskite solar cells (PSCs) have stood out in recent years for their great potential in offering low-temperature compatibility, long-term stability and tandem cell suitability. However, challenges persist, particularly concerning the use of nickel oxide nanoparticles (NiO<sub><i>x</i></sub> NPs) as the hole transport material, where issues such as low conductivity, impurity-induced aggregation and interface redox reactions significantly hinder device performance. In response, this study presents a novel synthesis method for NiO<sub><i>x</i></sub> NPs, leveraging the introduction of ammonium salt dopants (NH<sub>4</sub>Cl and NH<sub>4</sub>SCN), and the solar cell utilizing the doped NiO<sub><i>x</i></sub> substrate exhibits much enhanced device performance. Furthermore, doped solar cells reach 23.27% power conversion efficiency (PCE) when a self-assembled monolayer (SAM) is further employed. This study provides critical insights into the synthesis and growth pathways of NiO<sub><i>x</i></sub> NPs, propelling the development of efficient hole transport materials for high-performance PSCs.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12598-024-02984-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02984-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 近年来,倒置型过氧化物太阳能电池(PSCs)因其在低温兼容性、长期稳定性和串联电池适用性方面的巨大潜力而脱颖而出。然而,挑战依然存在,特别是在使用氧化镍纳米粒子(NiOx NPs)作为空穴传输材料方面,低导电性、不纯物质诱导的聚集和界面氧化还原反应等问题严重阻碍了设备性能的提高。为此,本研究提出了一种新的掺杂铵盐(NH4Cl 和 NH4SCN)的镍氧化物 NPs 合成方法,利用掺杂镍氧化物基底的太阳能电池大大提高了器件性能。此外,当进一步采用自组装单层(SAM)时,掺杂太阳能电池的功率转换效率(PCE)可达到 23.27%。这项研究提供了有关氧化镍 NPs 的合成和生长途径的重要见解,推动了高性能 PSCs 的高效空穴传输材料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inorganic ammonium salt doping in nickel oxide for highly efficient planar perovskite solar cells

Abstract

Inverted perovskite solar cells (PSCs) have stood out in recent years for their great potential in offering low-temperature compatibility, long-term stability and tandem cell suitability. However, challenges persist, particularly concerning the use of nickel oxide nanoparticles (NiOx NPs) as the hole transport material, where issues such as low conductivity, impurity-induced aggregation and interface redox reactions significantly hinder device performance. In response, this study presents a novel synthesis method for NiOx NPs, leveraging the introduction of ammonium salt dopants (NH4Cl and NH4SCN), and the solar cell utilizing the doped NiOx substrate exhibits much enhanced device performance. Furthermore, doped solar cells reach 23.27% power conversion efficiency (PCE) when a self-assembled monolayer (SAM) is further employed. This study provides critical insights into the synthesis and growth pathways of NiOx NPs, propelling the development of efficient hole transport materials for high-performance PSCs.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification Ultrathin BiOCl crystals grown in highly disordered vapor micro-turbulence for deep ultraviolet photodetectors Recent advances in dual-atom catalysts for energy catalysis Self-supporting sea urchin-like Ni-Mo nano-materials as asymmetric electrodes for overall water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1