释放升级复合固体电解质中的富氧空位高熵氧化物

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-09-04 DOI:10.1007/s12598-024-02961-w
Jun Cheng, Nai-Xuan Ci, Hong-Qiang Zhang, Zhen Zeng, Xuan Zhou, Yuan-Yuan Li, Hua-Jun Qiu, Wei Zhai, Dan-Dan Gao, Li-Jie Ci, De-Ping Li
{"title":"释放升级复合固体电解质中的富氧空位高熵氧化物","authors":"Jun Cheng, Nai-Xuan Ci, Hong-Qiang Zhang, Zhen Zeng, Xuan Zhou, Yuan-Yuan Li, Hua-Jun Qiu, Wei Zhai, Dan-Dan Gao, Li-Jie Ci, De-Ping Li","doi":"10.1007/s12598-024-02961-w","DOIUrl":null,"url":null,"abstract":"<p>Recently, high-entropy materials are attracting enormous attention in battery applications, encompassing both electrode materials and solid electrolytes, due to the pliability and diversification in material composition and electronic structure. Theoretically, the rapid ion transport and the abundance of surface defects in high-entropy materials suggest a potential for enhancing the performance of composite solid-state electrolytes (CPEs). Herein, using a high-entropy oxide (HEO) filler to assess its potential contributions to CPEs is proposed. The distinctive structural distortions in HEO significantly improve the ionic conductivity (5 × 10<sup>−4</sup> S·cm<sup>−1</sup> at 60 °C) and Li-ion transference number (0.57) of CPEs. Furthermore, the enhanced Li-ion transport capability extends the critical current density from 0.6 to 1.5 mA·cm<sup>−2</sup> in Li/Li symmetric cells. In addition, all-solid-state batteries incorporating the HEO-modified CPEs exhibit superior rate performance and cycling stability. The work will enrich the application of HEOs in CPEs and provide fundamental understanding.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"23 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking oxygen vacancy-rich high-entropy oxides in upgrading composite solid electrolyte\",\"authors\":\"Jun Cheng, Nai-Xuan Ci, Hong-Qiang Zhang, Zhen Zeng, Xuan Zhou, Yuan-Yuan Li, Hua-Jun Qiu, Wei Zhai, Dan-Dan Gao, Li-Jie Ci, De-Ping Li\",\"doi\":\"10.1007/s12598-024-02961-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, high-entropy materials are attracting enormous attention in battery applications, encompassing both electrode materials and solid electrolytes, due to the pliability and diversification in material composition and electronic structure. Theoretically, the rapid ion transport and the abundance of surface defects in high-entropy materials suggest a potential for enhancing the performance of composite solid-state electrolytes (CPEs). Herein, using a high-entropy oxide (HEO) filler to assess its potential contributions to CPEs is proposed. The distinctive structural distortions in HEO significantly improve the ionic conductivity (5 × 10<sup>−4</sup> S·cm<sup>−1</sup> at 60 °C) and Li-ion transference number (0.57) of CPEs. Furthermore, the enhanced Li-ion transport capability extends the critical current density from 0.6 to 1.5 mA·cm<sup>−2</sup> in Li/Li symmetric cells. In addition, all-solid-state batteries incorporating the HEO-modified CPEs exhibit superior rate performance and cycling stability. The work will enrich the application of HEOs in CPEs and provide fundamental understanding.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12598-024-02961-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02961-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近来,高熵材料因其材料成分和电子结构的柔韧性和多样性,在电池应用领域受到极大关注,包括电极材料和固体电解质。从理论上讲,高熵材料的快速离子传输和丰富的表面缺陷为提高复合固态电解质(CPE)的性能提供了可能。本文提出使用高熵氧化物(HEO)填料来评估其对 CPE 的潜在贡献。HEO 中独特的结构畸变显著提高了 CPE 的离子电导率(5 × 10-4 S-cm-1,60 °C)和锂离子传输数(0.57)。此外,增强的锂离子传输能力还将锂/锂对称电池的临界电流密度从 0.6 mA-cm-2 提高到 1.5 mA-cm-2。此外,采用 HEO 改性氯化聚乙烯的全固态电池表现出卓越的速率性能和循环稳定性。这项工作将丰富 HEO 在 CPE 中的应用,并提供基本的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking oxygen vacancy-rich high-entropy oxides in upgrading composite solid electrolyte

Recently, high-entropy materials are attracting enormous attention in battery applications, encompassing both electrode materials and solid electrolytes, due to the pliability and diversification in material composition and electronic structure. Theoretically, the rapid ion transport and the abundance of surface defects in high-entropy materials suggest a potential for enhancing the performance of composite solid-state electrolytes (CPEs). Herein, using a high-entropy oxide (HEO) filler to assess its potential contributions to CPEs is proposed. The distinctive structural distortions in HEO significantly improve the ionic conductivity (5 × 10−4 S·cm−1 at 60 °C) and Li-ion transference number (0.57) of CPEs. Furthermore, the enhanced Li-ion transport capability extends the critical current density from 0.6 to 1.5 mA·cm−2 in Li/Li symmetric cells. In addition, all-solid-state batteries incorporating the HEO-modified CPEs exhibit superior rate performance and cycling stability. The work will enrich the application of HEOs in CPEs and provide fundamental understanding.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification Ultrathin BiOCl crystals grown in highly disordered vapor micro-turbulence for deep ultraviolet photodetectors Recent advances in dual-atom catalysts for energy catalysis Self-supporting sea urchin-like Ni-Mo nano-materials as asymmetric electrodes for overall water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1