钨基富锂岩盐稳定无钴富镍层状氧化物阴极

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-08-31 DOI:10.1007/s12598-024-02970-9
Bing-Chen Li, Mei Wang, Bing-Yuan Han, Yuan-Xia Zhang, Da-Jian Wang, Jing-Jing Chen, Zhi-Yong Mao, Chen-Long Dong
{"title":"钨基富锂岩盐稳定无钴富镍层状氧化物阴极","authors":"Bing-Chen Li, Mei Wang, Bing-Yuan Han, Yuan-Xia Zhang, Da-Jian Wang, Jing-Jing Chen, Zhi-Yong Mao, Chen-Long Dong","doi":"10.1007/s12598-024-02970-9","DOIUrl":null,"url":null,"abstract":"<p>Dual-element-doped Co-free Ni-rich LiNiO<sub>2</sub>-based cathodes demonstrate great potential for high-energy lithium-ion batteries (LIBs). Nevertheless, they suffer from serious Li<sup>+</sup>/Ni<sup>2+</sup> mixing, irreversible phase transitions, structural degradation and side reactions at the cathode/electrolyte interface. Herein, W is purposively introduced into LiNi<sub>0.9</sub>Mn<sub>0.05</sub>Ti<sub>0.025</sub>Al<sub>0.025</sub>O<sub>2</sub> to engineer rock-salt Li<sub>4+<i>x</i></sub>Ni<sub>1-<i>x</i></sub>WO<sub>6</sub> stabilized LiNi<sub>0.9</sub>Mn<sub>0.035</sub>Ti<sub>0.025</sub>Al<sub>0.025</sub>W<sub>0.015</sub>O<sub>2</sub> (LNMTAWO) cathode. In situ characterizations, together with electrochemical analysis, demonstrate that Mn, Ti and Al can effectively enhance the reversibility of phase transitions, stabilize the TM–O bonds under high voltage and relieve voltage decay. The rock-salt Li<sub>4+<i>x</i></sub>Ni<sub>1-<i>x</i></sub>WO<sub>6</sub> can prevent the overgrowth of grain size, avoid the exposure of active materials into electrolytes and decrease the side reaction. Benefitting from the dual-element synergistic effects, the LNMTAWO cathode offers high reversible capacities of 228.7 and 150.8 mAh·g<sup>−1</sup> at 0.2C and 5C, respectively, and contributes a high reversible capacity of 171.4 mAh·g<sup>−1</sup> at 0.5C after 200 cycles (voltage delay: 5 mV) and 88.4 mAh·g<sup>−1</sup> at 10C after 500 cycles. Such design of rock-salt structure symbiotically grown on Ni-rich cathodes by introducing high-valence elements would provide rational guidelines on engineering high-energy Co-free Ni-rich LIB cathodes.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"270 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tungsten-based Li-rich rock salt stabilized Co-free Ni-rich layered oxide cathodes\",\"authors\":\"Bing-Chen Li, Mei Wang, Bing-Yuan Han, Yuan-Xia Zhang, Da-Jian Wang, Jing-Jing Chen, Zhi-Yong Mao, Chen-Long Dong\",\"doi\":\"10.1007/s12598-024-02970-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dual-element-doped Co-free Ni-rich LiNiO<sub>2</sub>-based cathodes demonstrate great potential for high-energy lithium-ion batteries (LIBs). Nevertheless, they suffer from serious Li<sup>+</sup>/Ni<sup>2+</sup> mixing, irreversible phase transitions, structural degradation and side reactions at the cathode/electrolyte interface. Herein, W is purposively introduced into LiNi<sub>0.9</sub>Mn<sub>0.05</sub>Ti<sub>0.025</sub>Al<sub>0.025</sub>O<sub>2</sub> to engineer rock-salt Li<sub>4+<i>x</i></sub>Ni<sub>1-<i>x</i></sub>WO<sub>6</sub> stabilized LiNi<sub>0.9</sub>Mn<sub>0.035</sub>Ti<sub>0.025</sub>Al<sub>0.025</sub>W<sub>0.015</sub>O<sub>2</sub> (LNMTAWO) cathode. In situ characterizations, together with electrochemical analysis, demonstrate that Mn, Ti and Al can effectively enhance the reversibility of phase transitions, stabilize the TM–O bonds under high voltage and relieve voltage decay. The rock-salt Li<sub>4+<i>x</i></sub>Ni<sub>1-<i>x</i></sub>WO<sub>6</sub> can prevent the overgrowth of grain size, avoid the exposure of active materials into electrolytes and decrease the side reaction. Benefitting from the dual-element synergistic effects, the LNMTAWO cathode offers high reversible capacities of 228.7 and 150.8 mAh·g<sup>−1</sup> at 0.2C and 5C, respectively, and contributes a high reversible capacity of 171.4 mAh·g<sup>−1</sup> at 0.5C after 200 cycles (voltage delay: 5 mV) and 88.4 mAh·g<sup>−1</sup> at 10C after 500 cycles. Such design of rock-salt structure symbiotically grown on Ni-rich cathodes by introducing high-valence elements would provide rational guidelines on engineering high-energy Co-free Ni-rich LIB cathodes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"270 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12598-024-02970-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02970-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

双元素掺杂的无钴富镍二氧化镍正极在高能锂离子电池(LIBs)中显示出巨大的潜力。然而,它们在阴极/电解质界面上存在严重的 Li+/Ni2+ 混合、不可逆相变、结构退化和副反应等问题。在此,我们有目的地在 LiNi0.9Mn0.05Ti0.025Al0.025O2 中引入 W,以设计岩盐 Li4+xNi1-xWO6 稳定 LiNi0.9Mn0.035Ti0.025Al0.025W0.015O2 (LNMTAWO) 阴极。原位表征和电化学分析表明,锰、钛和铝能有效提高相变的可逆性,在高电压下稳定 TM-O 键,并缓解电压衰减。岩盐 Li4+xNi1-xWO6 可以防止晶粒尺寸过大,避免活性材料暴露在电解质中,并减少副反应。得益于双元素协同效应,LNMTAWO 阴极在 0.2C 和 5C 条件下的可逆容量分别达到 228.7 和 150.8 mAh-g-1,在 0.5C 条件下循环 200 次(电压延迟:5 mV)后的可逆容量达到 171.4 mAh-g-1,在 10C 条件下循环 500 次后的可逆容量达到 88.4 mAh-g-1。这种通过引入高价元素在富镍阴极上共生生长的岩盐结构设计将为高能量无钴富镍锂离子电池阴极的工程设计提供合理的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tungsten-based Li-rich rock salt stabilized Co-free Ni-rich layered oxide cathodes

Dual-element-doped Co-free Ni-rich LiNiO2-based cathodes demonstrate great potential for high-energy lithium-ion batteries (LIBs). Nevertheless, they suffer from serious Li+/Ni2+ mixing, irreversible phase transitions, structural degradation and side reactions at the cathode/electrolyte interface. Herein, W is purposively introduced into LiNi0.9Mn0.05Ti0.025Al0.025O2 to engineer rock-salt Li4+xNi1-xWO6 stabilized LiNi0.9Mn0.035Ti0.025Al0.025W0.015O2 (LNMTAWO) cathode. In situ characterizations, together with electrochemical analysis, demonstrate that Mn, Ti and Al can effectively enhance the reversibility of phase transitions, stabilize the TM–O bonds under high voltage and relieve voltage decay. The rock-salt Li4+xNi1-xWO6 can prevent the overgrowth of grain size, avoid the exposure of active materials into electrolytes and decrease the side reaction. Benefitting from the dual-element synergistic effects, the LNMTAWO cathode offers high reversible capacities of 228.7 and 150.8 mAh·g−1 at 0.2C and 5C, respectively, and contributes a high reversible capacity of 171.4 mAh·g−1 at 0.5C after 200 cycles (voltage delay: 5 mV) and 88.4 mAh·g−1 at 10C after 500 cycles. Such design of rock-salt structure symbiotically grown on Ni-rich cathodes by introducing high-valence elements would provide rational guidelines on engineering high-energy Co-free Ni-rich LIB cathodes.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling Preparation and electrocatalytic performance of novel-integrated Ni-Mo sulfide electrode materials for water splitting Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1