通过载流子工程实现 p 型 BiSbTe 柔性薄膜的高功率因数

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-08-31 DOI:10.1007/s12598-024-02962-9
Dong-Wei Ao, Bo Wu, Wei-Di Liu, Xiang-Bo Shen, Wen-Qing Wei
{"title":"通过载流子工程实现 p 型 BiSbTe 柔性薄膜的高功率因数","authors":"Dong-Wei Ao, Bo Wu, Wei-Di Liu, Xiang-Bo Shen, Wen-Qing Wei","doi":"10.1007/s12598-024-02962-9","DOIUrl":null,"url":null,"abstract":"<p>Flexible thermoelectric thin films offer a promising avenue for the development of portable and sustainable flexible power supplies. However, a lack of thin films with excellent performance restricts their application in flexible thermoelectric devices. In this study, high-performance BiSbTe films are successfully prepared using a combination of magnetron sputtering and thermal diffusion. By optimizing carrier concentration to ~ 4.47 × 10<sup>19</sup> cm<sup>−3</sup> and simultaneously realizing high carrier mobility of &gt; 120 cm<sup>2</sup>·V<sup>−1</sup>·s<sup>−1</sup>, an impressive room-temperature power factor of 24.13 μW·cm<sup>−1</sup>·K<sup>−2</sup> is achieved in a Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> thin film. The flexible Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> thin film also demonstrates excellent bending resistance and stability (Δ<i>R</i>/<i>R</i><sub>0</sub> &lt; 5%, Δ<i>S</i>/<i>S</i><sub>0</sub> &lt; 5%, and Δ<i>S</i><sup>2</sup><i>σ</i>/<i>S</i><sub>0</sub><sup>2</sup><i>σ</i><sub>0</sub> &lt; 10%) after 1000 bending cycles at a minimum bending radius of 6 mm. A flexible thin-film thermoelectric device assembled with p-type Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> legs achieves a remarkable power output of ~ 82.15 nW and a power density of ~ 547.68 μW·cm<sup>−2</sup> under a temperature difference of 20 K.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"37 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizing high power factor in p-type BiSbTe flexible thin films via carrier engineering\",\"authors\":\"Dong-Wei Ao, Bo Wu, Wei-Di Liu, Xiang-Bo Shen, Wen-Qing Wei\",\"doi\":\"10.1007/s12598-024-02962-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flexible thermoelectric thin films offer a promising avenue for the development of portable and sustainable flexible power supplies. However, a lack of thin films with excellent performance restricts their application in flexible thermoelectric devices. In this study, high-performance BiSbTe films are successfully prepared using a combination of magnetron sputtering and thermal diffusion. By optimizing carrier concentration to ~ 4.47 × 10<sup>19</sup> cm<sup>−3</sup> and simultaneously realizing high carrier mobility of &gt; 120 cm<sup>2</sup>·V<sup>−1</sup>·s<sup>−1</sup>, an impressive room-temperature power factor of 24.13 μW·cm<sup>−1</sup>·K<sup>−2</sup> is achieved in a Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> thin film. The flexible Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> thin film also demonstrates excellent bending resistance and stability (Δ<i>R</i>/<i>R</i><sub>0</sub> &lt; 5%, Δ<i>S</i>/<i>S</i><sub>0</sub> &lt; 5%, and Δ<i>S</i><sup>2</sup><i>σ</i>/<i>S</i><sub>0</sub><sup>2</sup><i>σ</i><sub>0</sub> &lt; 10%) after 1000 bending cycles at a minimum bending radius of 6 mm. A flexible thin-film thermoelectric device assembled with p-type Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> legs achieves a remarkable power output of ~ 82.15 nW and a power density of ~ 547.68 μW·cm<sup>−2</sup> under a temperature difference of 20 K.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12598-024-02962-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02962-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性热电薄膜为开发便携式可持续柔性电源提供了一条前景广阔的途径。然而,由于缺乏性能优异的薄膜,限制了它们在柔性热电设备中的应用。本研究采用磁控溅射和热扩散相结合的方法成功制备了高性能 BiSbTe 薄膜。通过将载流子浓度优化至 ~ 4.47 × 1019 cm-3,同时实现 > 120 cm2-V-1-s-1 的高载流子迁移率,Bi0.4Sb1.6Te3薄膜的室温功率因数达到了惊人的 24.13 μW-cm-1-K-2。这种柔性 Bi0.4Sb1.6Te3 薄膜在最小弯曲半径为 6 毫米的条件下,经过 1000 次弯曲循环后,还表现出卓越的抗弯曲性和稳定性(ΔR/R0 < 5%、ΔS/S0 < 5%、ΔS2σ/S02σ0 < 10%)。用 p 型 Bi0.4Sb1.6Te3 脚组装的柔性薄膜热电器件在 20 K 的温差下实现了 ~ 82.15 nW 的显著功率输出和 ~ 547.68 μW-cm-2 的功率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realizing high power factor in p-type BiSbTe flexible thin films via carrier engineering

Flexible thermoelectric thin films offer a promising avenue for the development of portable and sustainable flexible power supplies. However, a lack of thin films with excellent performance restricts their application in flexible thermoelectric devices. In this study, high-performance BiSbTe films are successfully prepared using a combination of magnetron sputtering and thermal diffusion. By optimizing carrier concentration to ~ 4.47 × 1019 cm−3 and simultaneously realizing high carrier mobility of > 120 cm2·V−1·s−1, an impressive room-temperature power factor of 24.13 μW·cm−1·K−2 is achieved in a Bi0.4Sb1.6Te3 thin film. The flexible Bi0.4Sb1.6Te3 thin film also demonstrates excellent bending resistance and stability (ΔR/R0 < 5%, ΔS/S0 < 5%, and ΔS2σ/S02σ0 < 10%) after 1000 bending cycles at a minimum bending radius of 6 mm. A flexible thin-film thermoelectric device assembled with p-type Bi0.4Sb1.6Te3 legs achieves a remarkable power output of ~ 82.15 nW and a power density of ~ 547.68 μW·cm−2 under a temperature difference of 20 K.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification Ultrathin BiOCl crystals grown in highly disordered vapor micro-turbulence for deep ultraviolet photodetectors Recent advances in dual-atom catalysts for energy catalysis Self-supporting sea urchin-like Ni-Mo nano-materials as asymmetric electrodes for overall water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1