通过了解氧化锰的储能机制构建高性能锌离子水电池阴极

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-08-16 DOI:10.1007/s12598-024-02938-9
Xue-Min Yan, Hong Li, Bing-Ling Zhang, Bo-Hong Chen, Wei Xiao
{"title":"通过了解氧化锰的储能机制构建高性能锌离子水电池阴极","authors":"Xue-Min Yan,&nbsp;Hong Li,&nbsp;Bing-Ling Zhang,&nbsp;Bo-Hong Chen,&nbsp;Wei Xiao","doi":"10.1007/s12598-024-02938-9","DOIUrl":null,"url":null,"abstract":"<div><p>MnO, a potential cathode for aqueous zinc ion batteries (AZIBs), has received extensive attention. Nevertheless, the hazy energy storage mechanism and sluggish Zn<sup>2+</sup> kinetics pose a significant impediment to its future commercialization. In light of this, the electrochemical activation processes and reaction mechanism of pure MnO were investigated. Combining the Pourbaix diagram and phase diagram of Zn-Mn–O with experiment results, the essential energy storage behavior of MnO cathode can be explained as follows: (1) Zn<sup>2+</sup> insertion/extraction into ZnMn<sub>2</sub>O<sub>4</sub> derived from MnO-based active material, and (2) Zn<sup>2+</sup> insertion/extraction into ZnMn<sub>2</sub>O<sub>4</sub> (originated from the transition of Mn<sup>2+</sup> → Zn<sub>2</sub>Mn<sub>3</sub>O<sub>8</sub> → ZnMn<sub>2</sub>O<sub>4</sub> in the electrolyte). To further ulteriorly enhance the electrochemistry performance of MnO, N-doped carbon fiber surrounding MnO nanoparticles was constructed, which can provide a conductive matrix with a high specific surface area preventing the undue stack of as-formed ZnMn<sub>2</sub>O<sub>4</sub>. Additionally, it creates a conductive highway for Zn<sup>2+</sup> penetration through the electrode/electrolyte interphase, thanks to the electron-rich N that facilitate the reduction of the desolvation penalty. Thus, the results from this study provide a new angle for designing high-performance MnO-based cathodes for AZIBs.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 1","pages":"218 - 229"},"PeriodicalIF":9.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing a high-performance cathode for aqueous zinc ion batteries via understanding the energy storage mechanism of MnO\",\"authors\":\"Xue-Min Yan,&nbsp;Hong Li,&nbsp;Bing-Ling Zhang,&nbsp;Bo-Hong Chen,&nbsp;Wei Xiao\",\"doi\":\"10.1007/s12598-024-02938-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MnO, a potential cathode for aqueous zinc ion batteries (AZIBs), has received extensive attention. Nevertheless, the hazy energy storage mechanism and sluggish Zn<sup>2+</sup> kinetics pose a significant impediment to its future commercialization. In light of this, the electrochemical activation processes and reaction mechanism of pure MnO were investigated. Combining the Pourbaix diagram and phase diagram of Zn-Mn–O with experiment results, the essential energy storage behavior of MnO cathode can be explained as follows: (1) Zn<sup>2+</sup> insertion/extraction into ZnMn<sub>2</sub>O<sub>4</sub> derived from MnO-based active material, and (2) Zn<sup>2+</sup> insertion/extraction into ZnMn<sub>2</sub>O<sub>4</sub> (originated from the transition of Mn<sup>2+</sup> → Zn<sub>2</sub>Mn<sub>3</sub>O<sub>8</sub> → ZnMn<sub>2</sub>O<sub>4</sub> in the electrolyte). To further ulteriorly enhance the electrochemistry performance of MnO, N-doped carbon fiber surrounding MnO nanoparticles was constructed, which can provide a conductive matrix with a high specific surface area preventing the undue stack of as-formed ZnMn<sub>2</sub>O<sub>4</sub>. Additionally, it creates a conductive highway for Zn<sup>2+</sup> penetration through the electrode/electrolyte interphase, thanks to the electron-rich N that facilitate the reduction of the desolvation penalty. Thus, the results from this study provide a new angle for designing high-performance MnO-based cathodes for AZIBs.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 1\",\"pages\":\"218 - 229\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-02938-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02938-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化锰作为水性锌离子电池(AZIBs)的潜在阴极,已受到广泛关注。然而,朦胧的储能机制和迟缓的 Zn2+ 动力学对其未来的商业化构成了重大阻碍。有鉴于此,我们对纯氧化锰的电化学活化过程和反应机理进行了研究。结合 Zn-Mn-O 的 Pourbaix 图和相图以及实验结果,可将 MnO 阴极的基本储能行为解释如下:(1) Zn2+ 插入/萃取到 ZnMn2O4 中,源自 MnO 基活性材料;以及 (2) Zn2+ 插入/萃取到 ZnMn2O4 中(源自电解质中 Mn2+ → Zn2Mn3O8 → ZnMn2O4 的转变)。为了进一步提高 MnO 的电化学性能,我们在 MnO 纳米粒子周围构建了掺杂 N 的碳纤维,它可以提供具有高比表面积的导电基质,防止 ZnMn2O4 在电解质中过度堆积。此外,由于富含电子的 N 有助于减少脱溶惩罚,它还为 Zn2+ 穿透电极/电解质间相创造了一条导电通道。因此,本研究的结果为设计高性能的 MnO 基 AZIB 阴极提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constructing a high-performance cathode for aqueous zinc ion batteries via understanding the energy storage mechanism of MnO

MnO, a potential cathode for aqueous zinc ion batteries (AZIBs), has received extensive attention. Nevertheless, the hazy energy storage mechanism and sluggish Zn2+ kinetics pose a significant impediment to its future commercialization. In light of this, the electrochemical activation processes and reaction mechanism of pure MnO were investigated. Combining the Pourbaix diagram and phase diagram of Zn-Mn–O with experiment results, the essential energy storage behavior of MnO cathode can be explained as follows: (1) Zn2+ insertion/extraction into ZnMn2O4 derived from MnO-based active material, and (2) Zn2+ insertion/extraction into ZnMn2O4 (originated from the transition of Mn2+ → Zn2Mn3O8 → ZnMn2O4 in the electrolyte). To further ulteriorly enhance the electrochemistry performance of MnO, N-doped carbon fiber surrounding MnO nanoparticles was constructed, which can provide a conductive matrix with a high specific surface area preventing the undue stack of as-formed ZnMn2O4. Additionally, it creates a conductive highway for Zn2+ penetration through the electrode/electrolyte interphase, thanks to the electron-rich N that facilitate the reduction of the desolvation penalty. Thus, the results from this study provide a new angle for designing high-performance MnO-based cathodes for AZIBs.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Self-assembled co-delivery system of gold nanoparticles and paclitaxel based on in-situ dynamic covalent chemistry for synergistic chemo-photothermal therapy Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling Preparation and electrocatalytic performance of novel-integrated Ni-Mo sulfide electrode materials for water splitting Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications Pseudo-binary composite of Sr2TiMoO6–Al2O3 as a novel microwave absorbing material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1