构建酰胺键超分子多功能填料,提高自愈性、导热性和介电性能

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Molecular Systems Design & Engineering Pub Date : 2024-09-01 DOI:10.1039/D4ME00114A
Junlong Yao, Zongqiang Fu, Huan Yang, Lin Gao, Xueliang Jiang, Wei Nie, Zhengguang Sun, Haolan Lu, Meiyun Lin and Jinglou Xu
{"title":"构建酰胺键超分子多功能填料,提高自愈性、导热性和介电性能","authors":"Junlong Yao, Zongqiang Fu, Huan Yang, Lin Gao, Xueliang Jiang, Wei Nie, Zhengguang Sun, Haolan Lu, Meiyun Lin and Jinglou Xu","doi":"10.1039/D4ME00114A","DOIUrl":null,"url":null,"abstract":"<p >Multifunctional composites with rapid self-healing performance have been widely applied in various fields. However, different types of fillers result in decreased self-healing efficiency and present agglomeration and poor compatibility especially at high filler contents. Here, based on the different surface modifications of barium titanate (BT) and silicon carbide (SiC) and the amide-bond synergistic effects between these fillers, self-healing supramolecular composites with high filler contents (up to 30%) are reported, and exhibit high strength, dielectric and thermal-conduction properties. Modification significantly improves the dispersion of these fillers, and greatly enhances the coexistence and synergy between these fillers. This three-phase amide-bonded supramolecular composite exhibits a high tensile strength of 3.22 MPa compared to other self-healing materials such as self-healing hydrogels, a high dielectric constant of 23, a high thermal conductivity of 0.36 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> and a superior self-healing efficiency of above 94%. These performances are ascribed to the formation of amide bonds between the amino groups in 3-aminopropyltriethoxysilane (KH550)-modified silicon carbide (SiC-NH<small><sub>2</sub></small>) and the carboxyl groups in tartaric acid (TA)-modified barium titanate (BT-TA), which can provide efficient supramolecular interactions between different fillers, as well as more reversible hydrogen bonding for the matrix. This three-phase amide-bonded supramolecular composite provides an effective strategy to improve the self-healing properties of multifunctional composites, and will bring pioneering functions to electronic packaging materials, dielectric energy storage materials, environmental energy and other fields, which can open up broad application prospects.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 11","pages":" 1167-1178"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of amide-bonded supramolecular multifunctional fillers towards boosted self-healing, thermal conductivity and dielectric properties\",\"authors\":\"Junlong Yao, Zongqiang Fu, Huan Yang, Lin Gao, Xueliang Jiang, Wei Nie, Zhengguang Sun, Haolan Lu, Meiyun Lin and Jinglou Xu\",\"doi\":\"10.1039/D4ME00114A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multifunctional composites with rapid self-healing performance have been widely applied in various fields. However, different types of fillers result in decreased self-healing efficiency and present agglomeration and poor compatibility especially at high filler contents. Here, based on the different surface modifications of barium titanate (BT) and silicon carbide (SiC) and the amide-bond synergistic effects between these fillers, self-healing supramolecular composites with high filler contents (up to 30%) are reported, and exhibit high strength, dielectric and thermal-conduction properties. Modification significantly improves the dispersion of these fillers, and greatly enhances the coexistence and synergy between these fillers. This three-phase amide-bonded supramolecular composite exhibits a high tensile strength of 3.22 MPa compared to other self-healing materials such as self-healing hydrogels, a high dielectric constant of 23, a high thermal conductivity of 0.36 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> and a superior self-healing efficiency of above 94%. These performances are ascribed to the formation of amide bonds between the amino groups in 3-aminopropyltriethoxysilane (KH550)-modified silicon carbide (SiC-NH<small><sub>2</sub></small>) and the carboxyl groups in tartaric acid (TA)-modified barium titanate (BT-TA), which can provide efficient supramolecular interactions between different fillers, as well as more reversible hydrogen bonding for the matrix. This three-phase amide-bonded supramolecular composite provides an effective strategy to improve the self-healing properties of multifunctional composites, and will bring pioneering functions to electronic packaging materials, dielectric energy storage materials, environmental energy and other fields, which can open up broad application prospects.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 11\",\"pages\":\" 1167-1178\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/me/d4me00114a\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/me/d4me00114a","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

具有快速自愈合性能的多功能复合材料已被广泛应用于各个领域。然而,不同类型的填料会导致自愈合效率降低,尤其是在填料含量较高时,会出现团聚和相容性差的问题。本文基于钛酸钡(BT)和碳化硅(SiC)的不同表面改性以及这些填料之间的酰胺键协同效应,报道了高填料含量(高达 30%)的自愈合超分子复合材料,并显示出较高的强度、介电和热传导性能。改性可明显改善这些填料的分散性,并大大增强这些填料之间的共存性和协同性。与其他自愈合材料(如自愈合水凝胶)相比,这种三相酰胺键合超分子复合材料的抗拉强度高达 3.22 兆帕;介电常数高达 23;热导率高达 0.36 W m-1 K-1;自愈合效率高达 94%以上。这些性能得益于 3-氨丙基三乙氧基硅烷(KH550)改性碳化硅(SiC-NH2)中的氨基与酒石酸(TA)改性钛酸钡(BT-TA)中的羧基之间形成的酰胺键,这种酰胺键可以在不同填料之间提供高效的超分子相互作用,并为基质提供更多可逆氢键。这种三相酰胺键超分子复合材料为提高多功能复合材料的自修复性能提供了有效策略,将为电子封装材料、介电储能材料、环境能源等领域带来开创性功能,开辟广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of amide-bonded supramolecular multifunctional fillers towards boosted self-healing, thermal conductivity and dielectric properties

Multifunctional composites with rapid self-healing performance have been widely applied in various fields. However, different types of fillers result in decreased self-healing efficiency and present agglomeration and poor compatibility especially at high filler contents. Here, based on the different surface modifications of barium titanate (BT) and silicon carbide (SiC) and the amide-bond synergistic effects between these fillers, self-healing supramolecular composites with high filler contents (up to 30%) are reported, and exhibit high strength, dielectric and thermal-conduction properties. Modification significantly improves the dispersion of these fillers, and greatly enhances the coexistence and synergy between these fillers. This three-phase amide-bonded supramolecular composite exhibits a high tensile strength of 3.22 MPa compared to other self-healing materials such as self-healing hydrogels, a high dielectric constant of 23, a high thermal conductivity of 0.36 W m−1 K−1 and a superior self-healing efficiency of above 94%. These performances are ascribed to the formation of amide bonds between the amino groups in 3-aminopropyltriethoxysilane (KH550)-modified silicon carbide (SiC-NH2) and the carboxyl groups in tartaric acid (TA)-modified barium titanate (BT-TA), which can provide efficient supramolecular interactions between different fillers, as well as more reversible hydrogen bonding for the matrix. This three-phase amide-bonded supramolecular composite provides an effective strategy to improve the self-healing properties of multifunctional composites, and will bring pioneering functions to electronic packaging materials, dielectric energy storage materials, environmental energy and other fields, which can open up broad application prospects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
期刊最新文献
Back cover Back cover Molecular design of protein-based materials – state of the art, opportunities and challenges at the interface between materials engineering and synthetic biology Multi-site esterification: a tunable, reversible strategy to tailor therapeutic peptides for delivery Controlling the Photochromism of Zirconium Pyromellitic Diimide-Based Metal-Organic Frameworks through Coordinating Solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1