沿着一个走向-滑动板块边界的垂直变形:死海断层南端亚喀巴湾和蒂朗岛隆起的海洋地层

IF 3.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Tectonics Pub Date : 2024-08-31 DOI:10.1029/2023tc007977
Matthieu Ribot, Marthe Lefèvre, Yann Klinger, Edwige Pons-Branchu, Arnaud Dapoigny, Sigurjón Jónsson
{"title":"沿着一个走向-滑动板块边界的垂直变形:死海断层南端亚喀巴湾和蒂朗岛隆起的海洋地层","authors":"Matthieu Ribot, Marthe Lefèvre, Yann Klinger, Edwige Pons-Branchu, Arnaud Dapoigny, Sigurjón Jónsson","doi":"10.1029/2023tc007977","DOIUrl":null,"url":null,"abstract":"Close to its southern end where it connects to the Red Sea rift, the Dead Sea strike-slip fault (DSF) becomes trans-tensional in the Gulf of Aqaba. Details of this transition, however, remain difficult to unravel as most of the active tectonic structures are located off-shore. This study focuses on uplifted marine terraces located in the Gulf of Aqaba and on Tiran Island. Using high-resolution tri-stereo Pleiades satellite imagery, we build a Digital Surface Model (DSM) at a 0.5-m resolution of the eastern coast of the gulf and Tiran Island to map 19 levels of marine terraces. The terraces are preserved at elevations from 1 m to almost 500 m above the current sea level. Correlating laterally U-Th ages obtained along the gulf with the lower levels found on Tiran Island, we build an age model to estimate the ages of the upper terraces on the island. Combining this with the terrace heights from our DSM, we derive the uplift rate affecting the terraces. The geographic extent of the terraces along the gulf suggests that the DSF is responsible for uplift along the entire eastern coastline of the gulf at a rate of about 0.14 ± 0.03 mm/year at least over the Quaternary. The uplift rate of Tiran Island, located closer to the Red Sea rift, is faster at 0.21 ± 0.02 mm/year over the past 2.4 Myr. This faster uplift rate suggests a combined tectonic uplift related to both the Dead Sea strike-slip fault system and the Red Sea rift.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical Deformation Along a Strike-Slip Plate Boundary: The Uplifted Marine Terraces of the Gulf of Aqaba and Tiran Island, at the Southern End of the Dead Sea Fault\",\"authors\":\"Matthieu Ribot, Marthe Lefèvre, Yann Klinger, Edwige Pons-Branchu, Arnaud Dapoigny, Sigurjón Jónsson\",\"doi\":\"10.1029/2023tc007977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Close to its southern end where it connects to the Red Sea rift, the Dead Sea strike-slip fault (DSF) becomes trans-tensional in the Gulf of Aqaba. Details of this transition, however, remain difficult to unravel as most of the active tectonic structures are located off-shore. This study focuses on uplifted marine terraces located in the Gulf of Aqaba and on Tiran Island. Using high-resolution tri-stereo Pleiades satellite imagery, we build a Digital Surface Model (DSM) at a 0.5-m resolution of the eastern coast of the gulf and Tiran Island to map 19 levels of marine terraces. The terraces are preserved at elevations from 1 m to almost 500 m above the current sea level. Correlating laterally U-Th ages obtained along the gulf with the lower levels found on Tiran Island, we build an age model to estimate the ages of the upper terraces on the island. Combining this with the terrace heights from our DSM, we derive the uplift rate affecting the terraces. The geographic extent of the terraces along the gulf suggests that the DSF is responsible for uplift along the entire eastern coastline of the gulf at a rate of about 0.14 ± 0.03 mm/year at least over the Quaternary. The uplift rate of Tiran Island, located closer to the Red Sea rift, is faster at 0.21 ± 0.02 mm/year over the past 2.4 Myr. This faster uplift rate suggests a combined tectonic uplift related to both the Dead Sea strike-slip fault system and the Red Sea rift.\",\"PeriodicalId\":22351,\"journal\":{\"name\":\"Tectonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tectonics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023tc007977\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023tc007977","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

死海走向滑动断层(DSF)在靠近其南端与红海断裂相连的地方,在亚喀巴湾变成了跨张性断层。然而,由于大部分活跃的构造结构都位于近海,因此这一过渡的细节仍然难以揭示。这项研究的重点是位于亚喀巴湾和蒂朗岛上的隆起海洋阶地。我们利用高分辨率三立体昴宿星团卫星图像,建立了海湾东海岸和蒂朗岛 0.5 米分辨率的数字地表模型(DSM),绘制了 19 层海洋阶地。这些阶地保存在海拔 1 米至近 500 米处。将海湾沿岸获得的横向 U-Th 年龄与蒂朗岛上发现的较低层相关联,我们建立了一个年龄模型,以估算蒂朗岛上层阶地的年龄。结合 DSM 得出的阶地高度,我们得出了影响阶地的隆起率。海湾沿岸阶地的地理范围表明,DSF 是海湾整个东部海岸线隆升的原因,至少在第四纪期间的隆升速率约为 0.14 ± 0.03 毫米/年。蒂朗岛的隆升速度更快,在过去的 2.4 百万年里,其隆升速度为 0.21 ± 0.02 毫米/年。这种较快的隆升速度表明,与死海走向滑动断层系统和红海断裂有关的综合构造隆升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vertical Deformation Along a Strike-Slip Plate Boundary: The Uplifted Marine Terraces of the Gulf of Aqaba and Tiran Island, at the Southern End of the Dead Sea Fault
Close to its southern end where it connects to the Red Sea rift, the Dead Sea strike-slip fault (DSF) becomes trans-tensional in the Gulf of Aqaba. Details of this transition, however, remain difficult to unravel as most of the active tectonic structures are located off-shore. This study focuses on uplifted marine terraces located in the Gulf of Aqaba and on Tiran Island. Using high-resolution tri-stereo Pleiades satellite imagery, we build a Digital Surface Model (DSM) at a 0.5-m resolution of the eastern coast of the gulf and Tiran Island to map 19 levels of marine terraces. The terraces are preserved at elevations from 1 m to almost 500 m above the current sea level. Correlating laterally U-Th ages obtained along the gulf with the lower levels found on Tiran Island, we build an age model to estimate the ages of the upper terraces on the island. Combining this with the terrace heights from our DSM, we derive the uplift rate affecting the terraces. The geographic extent of the terraces along the gulf suggests that the DSF is responsible for uplift along the entire eastern coastline of the gulf at a rate of about 0.14 ± 0.03 mm/year at least over the Quaternary. The uplift rate of Tiran Island, located closer to the Red Sea rift, is faster at 0.21 ± 0.02 mm/year over the past 2.4 Myr. This faster uplift rate suggests a combined tectonic uplift related to both the Dead Sea strike-slip fault system and the Red Sea rift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tectonics
Tectonics 地学-地球化学与地球物理
CiteScore
7.70
自引率
9.50%
发文量
151
审稿时长
3 months
期刊介绍: Tectonics (TECT) presents original scientific contributions that describe and explain the evolution, structure, and deformation of Earth¹s lithosphere. Contributions are welcome from any relevant area of research, including field, laboratory, petrological, geochemical, geochronological, geophysical, remote-sensing, and modeling studies. Multidisciplinary studies are particularly encouraged. Tectonics welcomes studies across the range of geologic time.
期刊最新文献
One Billion Years of Stability in the North American Midcontinent Following Two-Stage Grenvillian Structural Inversion Relating Quartz Crystallographic Preferred Orientation Intensity to Finite Strain Magnitude in the Northern Snake Range Metamorphic Core Complex, Nevada: A New Tool for Characterizing Strain Patterns in Ductilely Sheared Rocks Lancang Fault Assists Block Extrusion in Southeastern Tibet During Early-Middle Miocene Surface Rupture of the 2008 Mw 6.6 Nura Earthquake: Triggered Flexural-Slip Faulting in the Pamir-Tien Shan Collision Zone Detachment and Transfer Fault Systems in the Northern South China Sea, Insights Into 3D Tectonic Segmentation of Rifted Margins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1