超支化聚合物化学研究进展

IF 2.4 3区 化学 Q3 POLYMER SCIENCE Iranian Polymer Journal Pub Date : 2024-09-05 DOI:10.1007/s13726-024-01379-6
Aleksei Maksimov, Bulat Yarullin, Kharlampii Kharlampidi, Gennadii Kutyrev
{"title":"超支化聚合物化学研究进展","authors":"Aleksei Maksimov, Bulat Yarullin, Kharlampii Kharlampidi, Gennadii Kutyrev","doi":"10.1007/s13726-024-01379-6","DOIUrl":null,"url":null,"abstract":"<p>Hyperbranched polymers are densely packed macromolecules whose three-dimensional framework consists of a core and three or more branched short composite chains, namely dendrons. They have a spherical architecture and unique properties, such as nanoscale macromolecules (2–100 nm), high solubility, the presence of several branched chains, spatial voids and a large number of end functional groups. Various classes of hyperbranched polymers in the last 10 years such as polyalkanes, polyarylenes, polyhalides, organometallic polymers, polyethers, polyesters, nitrogen-containing and polyheterocyclic compounds are reviewed. These polymers can be readily obtained under mild conditions by polymerization, polycondensation or polycoupling reactions of polyfunctional monomers. The main characteristics confirming the hyperbranched structure of polymers are: low molecular weight, dispersity, medium degree of branching, large number of end functional groups, nanoscale macromolecules, three-dimensional architecture, presence of glass transition temperature, high solubility in various organic solvents, and low viscosity of polymer solutions. Due to their adaptable structures and special properties, hyperbranched polymers are widely used as hybrid materials and composites for structural applications, coatings, adhesives, membranes, catalysts, flame retardants, plasticizers, and light-emitting materials. The hyperbranched structure combined with low toxicity allows their use as highly effective nanoscale anticancer and bactericidal drugs, as well as contrast reagents for magnetic resonance tomography. The availability of technologically significant methods for the synthesis of hyperbranched polymers of various types makes it possible to carry out their industrial production on a scale sufficient for practical application in solving modern problems of biomedical chemistry and in many other branches of science and industry.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in hyperbranched polymer chemistry\",\"authors\":\"Aleksei Maksimov, Bulat Yarullin, Kharlampii Kharlampidi, Gennadii Kutyrev\",\"doi\":\"10.1007/s13726-024-01379-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hyperbranched polymers are densely packed macromolecules whose three-dimensional framework consists of a core and three or more branched short composite chains, namely dendrons. They have a spherical architecture and unique properties, such as nanoscale macromolecules (2–100 nm), high solubility, the presence of several branched chains, spatial voids and a large number of end functional groups. Various classes of hyperbranched polymers in the last 10 years such as polyalkanes, polyarylenes, polyhalides, organometallic polymers, polyethers, polyesters, nitrogen-containing and polyheterocyclic compounds are reviewed. These polymers can be readily obtained under mild conditions by polymerization, polycondensation or polycoupling reactions of polyfunctional monomers. The main characteristics confirming the hyperbranched structure of polymers are: low molecular weight, dispersity, medium degree of branching, large number of end functional groups, nanoscale macromolecules, three-dimensional architecture, presence of glass transition temperature, high solubility in various organic solvents, and low viscosity of polymer solutions. Due to their adaptable structures and special properties, hyperbranched polymers are widely used as hybrid materials and composites for structural applications, coatings, adhesives, membranes, catalysts, flame retardants, plasticizers, and light-emitting materials. The hyperbranched structure combined with low toxicity allows their use as highly effective nanoscale anticancer and bactericidal drugs, as well as contrast reagents for magnetic resonance tomography. The availability of technologically significant methods for the synthesis of hyperbranched polymers of various types makes it possible to carry out their industrial production on a scale sufficient for practical application in solving modern problems of biomedical chemistry and in many other branches of science and industry.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":601,\"journal\":{\"name\":\"Iranian Polymer Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s13726-024-01379-6\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s13726-024-01379-6","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

超支化聚合物是一种高密度大分子,其三维框架由一个核心和三个或三个以上的支化短复合链(即树枝状链)组成。它们具有球形结构和独特的性质,如纳米级大分子(2-100 纳米)、高溶解性、存在多个支链、空间空隙和大量末端官能团。本文综述了过去 10 年中出现的各类超支化聚合物,如聚烷烃、聚芳烯烃、聚卤化物、有机金属聚合物、聚醚、聚酯、含氮和多杂环化合物。这些聚合物可以在温和的条件下通过多官能团单体的聚合、缩聚或偶联反应轻易获得。超支化聚合物结构的主要特征包括:低分子量、分散性、中等支化程度、大量末端官能团、纳米级大分子、三维结构、玻璃化温度、在各种有机溶剂中的高溶解度以及聚合物溶液的低粘度。由于超支化聚合物具有适应性强的结构和特殊性能,因此被广泛用作结构应用、涂料、粘合剂、膜、催化剂、阻燃剂、增塑剂和发光材料的混合材料和复合材料。超支化结构和低毒性使其可用作高效的纳米级抗癌和杀菌药物,以及磁共振断层扫描的对比试剂。合成各种类型超支化聚合物的重要技术方法的出现,使其工业化生产的规模足以实际应用于解决现代生物医学化学以及许多其他科学和工业分支的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in hyperbranched polymer chemistry

Hyperbranched polymers are densely packed macromolecules whose three-dimensional framework consists of a core and three or more branched short composite chains, namely dendrons. They have a spherical architecture and unique properties, such as nanoscale macromolecules (2–100 nm), high solubility, the presence of several branched chains, spatial voids and a large number of end functional groups. Various classes of hyperbranched polymers in the last 10 years such as polyalkanes, polyarylenes, polyhalides, organometallic polymers, polyethers, polyesters, nitrogen-containing and polyheterocyclic compounds are reviewed. These polymers can be readily obtained under mild conditions by polymerization, polycondensation or polycoupling reactions of polyfunctional monomers. The main characteristics confirming the hyperbranched structure of polymers are: low molecular weight, dispersity, medium degree of branching, large number of end functional groups, nanoscale macromolecules, three-dimensional architecture, presence of glass transition temperature, high solubility in various organic solvents, and low viscosity of polymer solutions. Due to their adaptable structures and special properties, hyperbranched polymers are widely used as hybrid materials and composites for structural applications, coatings, adhesives, membranes, catalysts, flame retardants, plasticizers, and light-emitting materials. The hyperbranched structure combined with low toxicity allows their use as highly effective nanoscale anticancer and bactericidal drugs, as well as contrast reagents for magnetic resonance tomography. The availability of technologically significant methods for the synthesis of hyperbranched polymers of various types makes it possible to carry out their industrial production on a scale sufficient for practical application in solving modern problems of biomedical chemistry and in many other branches of science and industry.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Polymer Journal
Iranian Polymer Journal 化学-高分子科学
CiteScore
4.90
自引率
9.70%
发文量
107
审稿时长
2.8 months
期刊介绍: Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.
期刊最新文献
Pronouncedly elevated impact toughness of isotactic polypropylene upon annealing realized by introducing alkyl-terminated hyperbranched polyester Rice husk/glass fiber-reinforced poly(lactic acid) hybrid composites: rheological and dynamic mechanical study Optimizing drilling parameters for unidirectional glass fiber/nanoclay-epoxy matrix composites using gray relational analysis and response surface methodology Physio-mechanical and thermal characteristics of Mimosa pudica microfibers impregnated novel PLA biocomposite Biodegradable, biocompatible, and self-healing, injectable hydrogel based on oxidized Azadirachta indica gum and carboxymethyl chitosan through dynamic imine-linkage for biomedical application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1