描述南本格拉上升流系统中浮游海藻分布的基于个体的数值实验

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-02 DOI:10.1515/bot-2023-0061
Ross Coppin, Christo Rautenbach, Albertus J. Smit
{"title":"描述南本格拉上升流系统中浮游海藻分布的基于个体的数值实验","authors":"Ross Coppin, Christo Rautenbach, Albertus J. Smit","doi":"10.1515/bot-2023-0061","DOIUrl":null,"url":null,"abstract":"Kelps are resilient organisms, capable of thriving in high-energy wave environments. However, when hydrodynamic drag forces exerted by the wave environment exceed the kelps’ structural limits, individuals become dislodged. Floating kelps generally follow ocean currents, traveling long distances until air-filled structures fail or the epibiont load becomes too great, causing them to sink to the seafloor. The ability of kelp to disperse over vast offshore and nearshore systems makes them important for organic subsidy and as a dispersal vector for marine organisms. Previous research on dislodged macroalgae focused on context-specific rafts, limiting insights into the broader ecological role of floating kelp. This study employed a site-specific Lagrangian trajectory model to describe the spatial distribution of floating <jats:italic>Ecklonia maxima</jats:italic> along the South African coastline. The model incorporated buoyancy and sinking using site-specific morphological data. Findings revealed that the distribution of floating <jats:italic>E. maxima</jats:italic> is influenced by oceanographic conditions, and seasonal patterns were also evident. Mesoscale features played a vital role in kelp accumulation on the surface and seafloor and acted as barriers to dispersal. This study offers essential insights into kelp’s role as an organic subsidy and provides numerical evidence for kelp’s potential as a carbon sink, contributing to a better understanding of kelp ecosystems and their ecological functions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Individual-based numerical experiment to describe the distribution of floating kelp within the Southern Benguela Upwelling System\",\"authors\":\"Ross Coppin, Christo Rautenbach, Albertus J. Smit\",\"doi\":\"10.1515/bot-2023-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kelps are resilient organisms, capable of thriving in high-energy wave environments. However, when hydrodynamic drag forces exerted by the wave environment exceed the kelps’ structural limits, individuals become dislodged. Floating kelps generally follow ocean currents, traveling long distances until air-filled structures fail or the epibiont load becomes too great, causing them to sink to the seafloor. The ability of kelp to disperse over vast offshore and nearshore systems makes them important for organic subsidy and as a dispersal vector for marine organisms. Previous research on dislodged macroalgae focused on context-specific rafts, limiting insights into the broader ecological role of floating kelp. This study employed a site-specific Lagrangian trajectory model to describe the spatial distribution of floating <jats:italic>Ecklonia maxima</jats:italic> along the South African coastline. The model incorporated buoyancy and sinking using site-specific morphological data. Findings revealed that the distribution of floating <jats:italic>E. maxima</jats:italic> is influenced by oceanographic conditions, and seasonal patterns were also evident. Mesoscale features played a vital role in kelp accumulation on the surface and seafloor and acted as barriers to dispersal. This study offers essential insights into kelp’s role as an organic subsidy and provides numerical evidence for kelp’s potential as a carbon sink, contributing to a better understanding of kelp ecosystems and their ecological functions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/bot-2023-0061\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/bot-2023-0061","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

海带是一种生命力顽强的生物,能够在高能量的波浪环境中茁壮成长。然而,当波浪环境施加的水动力阻力超过海带的结构极限时,海带个体就会脱落。漂浮的海带一般会跟随洋流漂流很远的距离,直到充满空气的结构失效或附生体负荷过大,导致它们沉入海底。海带能够散布在广阔的近海和近岸系统中,这使它们成为重要的有机补贴和海洋生物的散布载体。以往对脱落大型藻类的研究主要集中在特定环境的浮筏上,限制了对漂浮海带更广泛生态作用的了解。本研究采用了一个针对特定地点的拉格朗日轨迹模型来描述南非海岸线上漂浮的 Ecklonia maxima 的空间分布。该模型利用特定地点的形态数据将浮力和下沉结合在一起。研究结果表明,漂浮的 Ecklonia maxima 的分布受海洋条件的影响,季节性模式也很明显。中尺度特征对海带在海面和海底的聚集起着至关重要的作用,并成为海带扩散的障碍。这项研究为了解海带作为有机补贴的作用提供了重要见解,并为海带作为碳汇的潜力提供了数字证据,有助于更好地了解海带生态系统及其生态功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Individual-based numerical experiment to describe the distribution of floating kelp within the Southern Benguela Upwelling System
Kelps are resilient organisms, capable of thriving in high-energy wave environments. However, when hydrodynamic drag forces exerted by the wave environment exceed the kelps’ structural limits, individuals become dislodged. Floating kelps generally follow ocean currents, traveling long distances until air-filled structures fail or the epibiont load becomes too great, causing them to sink to the seafloor. The ability of kelp to disperse over vast offshore and nearshore systems makes them important for organic subsidy and as a dispersal vector for marine organisms. Previous research on dislodged macroalgae focused on context-specific rafts, limiting insights into the broader ecological role of floating kelp. This study employed a site-specific Lagrangian trajectory model to describe the spatial distribution of floating Ecklonia maxima along the South African coastline. The model incorporated buoyancy and sinking using site-specific morphological data. Findings revealed that the distribution of floating E. maxima is influenced by oceanographic conditions, and seasonal patterns were also evident. Mesoscale features played a vital role in kelp accumulation on the surface and seafloor and acted as barriers to dispersal. This study offers essential insights into kelp’s role as an organic subsidy and provides numerical evidence for kelp’s potential as a carbon sink, contributing to a better understanding of kelp ecosystems and their ecological functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1