{"title":"非线性非周期性均质化:存在性、局部唯一性和估计值","authors":"Lutz Recke","doi":"arxiv-2408.06705","DOIUrl":null,"url":null,"abstract":"We consider periodic homogenization with localized defects of boundary value\nproblems for semilinear ODE systems of the type $$\n\\Big((A(x/\\varepsilon)+B(x/\\varepsilon))u'(x)+c(x,u(x))\\Big)'= d(x,u(x)) \\mbox{\nfor } x \\in (0,1),\\; u(0)=u(1)=0. $$ Our assumptions are, roughly speaking, as\nfollows: $A \\in L^\\infty(\\mathbb{R};\\mathbb{M}_n)$ is 1-periodic, $B \\in\nL^\\infty(\\mathbb{R};\\mathbb{M}_n))\\cap L^1(\\mathbb{R};\\mathbb{M}_n))$, $A(y)$\nand $A(y)+B(y)$ are positive definite uniformly with respect to $y$,\n$c(x,\\cdot),d(x,\\cdot)\\in C^1(\\mathbb{R}^n;\\mathbb{R}^n))$, $c(\\cdot,u) \\in\nC([0,1];\\mathbb{R}^n)$ and $d(\\cdot,u) \\in L^\\infty((0,1);\\mathbb{R}^n)$. For\nsmall $\\varepsilon>0$ we show existence of weak solutions $u=u_\\varepsilon$ as\nwell as their local uniqueness for $\\|u-u_0\\|_\\infty \\approx 0$, where $u_0$ is\na given non-degenerate solution to the homogenized problem, and we prove that\n$\\|u_\\varepsilon-u_0\\|_\\infty\\to 0$ and, if $c(\\cdot,u)$ is $C^1$-smooth, that\n$\\|u_\\varepsilon-u_0\\|_\\infty=O(\\varepsilon)$ for $\\varepsilon \\to 0$. The main\ntool of the proofs is an abstract result of implicit function theorem type\nwhich in the past has been applied to singular perturbation as well as to\nperiodic homogenization of nonlinear ODEs and PDEs and, hence, which permits a\ncommon approach to existence and local uniqueness results for singularly\nperturbed problems and for homogenization problems.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear non-periodic homogenization: Existence, local uniqueness and estimates\",\"authors\":\"Lutz Recke\",\"doi\":\"arxiv-2408.06705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider periodic homogenization with localized defects of boundary value\\nproblems for semilinear ODE systems of the type $$\\n\\\\Big((A(x/\\\\varepsilon)+B(x/\\\\varepsilon))u'(x)+c(x,u(x))\\\\Big)'= d(x,u(x)) \\\\mbox{\\nfor } x \\\\in (0,1),\\\\; u(0)=u(1)=0. $$ Our assumptions are, roughly speaking, as\\nfollows: $A \\\\in L^\\\\infty(\\\\mathbb{R};\\\\mathbb{M}_n)$ is 1-periodic, $B \\\\in\\nL^\\\\infty(\\\\mathbb{R};\\\\mathbb{M}_n))\\\\cap L^1(\\\\mathbb{R};\\\\mathbb{M}_n))$, $A(y)$\\nand $A(y)+B(y)$ are positive definite uniformly with respect to $y$,\\n$c(x,\\\\cdot),d(x,\\\\cdot)\\\\in C^1(\\\\mathbb{R}^n;\\\\mathbb{R}^n))$, $c(\\\\cdot,u) \\\\in\\nC([0,1];\\\\mathbb{R}^n)$ and $d(\\\\cdot,u) \\\\in L^\\\\infty((0,1);\\\\mathbb{R}^n)$. For\\nsmall $\\\\varepsilon>0$ we show existence of weak solutions $u=u_\\\\varepsilon$ as\\nwell as their local uniqueness for $\\\\|u-u_0\\\\|_\\\\infty \\\\approx 0$, where $u_0$ is\\na given non-degenerate solution to the homogenized problem, and we prove that\\n$\\\\|u_\\\\varepsilon-u_0\\\\|_\\\\infty\\\\to 0$ and, if $c(\\\\cdot,u)$ is $C^1$-smooth, that\\n$\\\\|u_\\\\varepsilon-u_0\\\\|_\\\\infty=O(\\\\varepsilon)$ for $\\\\varepsilon \\\\to 0$. The main\\ntool of the proofs is an abstract result of implicit function theorem type\\nwhich in the past has been applied to singular perturbation as well as to\\nperiodic homogenization of nonlinear ODEs and PDEs and, hence, which permits a\\ncommon approach to existence and local uniqueness results for singularly\\nperturbed problems and for homogenization problems.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear non-periodic homogenization: Existence, local uniqueness and estimates
We consider periodic homogenization with localized defects of boundary value
problems for semilinear ODE systems of the type $$
\Big((A(x/\varepsilon)+B(x/\varepsilon))u'(x)+c(x,u(x))\Big)'= d(x,u(x)) \mbox{
for } x \in (0,1),\; u(0)=u(1)=0. $$ Our assumptions are, roughly speaking, as
follows: $A \in L^\infty(\mathbb{R};\mathbb{M}_n)$ is 1-periodic, $B \in
L^\infty(\mathbb{R};\mathbb{M}_n))\cap L^1(\mathbb{R};\mathbb{M}_n))$, $A(y)$
and $A(y)+B(y)$ are positive definite uniformly with respect to $y$,
$c(x,\cdot),d(x,\cdot)\in C^1(\mathbb{R}^n;\mathbb{R}^n))$, $c(\cdot,u) \in
C([0,1];\mathbb{R}^n)$ and $d(\cdot,u) \in L^\infty((0,1);\mathbb{R}^n)$. For
small $\varepsilon>0$ we show existence of weak solutions $u=u_\varepsilon$ as
well as their local uniqueness for $\|u-u_0\|_\infty \approx 0$, where $u_0$ is
a given non-degenerate solution to the homogenized problem, and we prove that
$\|u_\varepsilon-u_0\|_\infty\to 0$ and, if $c(\cdot,u)$ is $C^1$-smooth, that
$\|u_\varepsilon-u_0\|_\infty=O(\varepsilon)$ for $\varepsilon \to 0$. The main
tool of the proofs is an abstract result of implicit function theorem type
which in the past has been applied to singular perturbation as well as to
periodic homogenization of nonlinear ODEs and PDEs and, hence, which permits a
common approach to existence and local uniqueness results for singularly
perturbed problems and for homogenization problems.