检测磁性喷嘴中的低频离子不稳定性

A Caldarelli, F Filleul, K Takahashi, R W Boswell, C Charles, J E Cater, N Rattenbury
{"title":"检测磁性喷嘴中的低频离子不稳定性","authors":"A Caldarelli, F Filleul, K Takahashi, R W Boswell, C Charles, J E Cater, N Rattenbury","doi":"10.1088/1361-6595/ad6f3f","DOIUrl":null,"url":null,"abstract":"A low-frequency ion instability, with frequency <inline-formula>\n<tex-math><?CDATA $f_\\mathrm{I}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">I</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"psstad6f3fieqn1.gif\"></inline-graphic></inline-formula> between the ion gyrofrequency and the lower hybrid frequency <inline-formula>\n<tex-math><?CDATA $f_\\mathrm{c,i} \\lt f_\\mathrm{I} \\ll f_\\mathrm{LH}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">c</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant=\"normal\">i</mml:mi></mml:mrow></mml:msub><mml:mo>&lt;</mml:mo><mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">I</mml:mi></mml:mrow></mml:msub><mml:mo>≪</mml:mo><mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mi>LH</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"psstad6f3fieqn2.gif\"></inline-graphic></inline-formula>, is detected in an argon plasma expanding in a magnetic nozzle for magnetic fields between <inline-formula>\n<tex-math><?CDATA $240\\lt B_{z\\mathrm{,max}}\\lt 700$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>240</mml:mn><mml:mo>&lt;</mml:mo><mml:msub><mml:mi>B</mml:mi><mml:mrow><mml:mi>z</mml:mi><mml:mrow><mml:mo>,</mml:mo><mml:mi>max</mml:mi></mml:mrow></mml:mrow></mml:msub><mml:mo>&lt;</mml:mo><mml:mn>700</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"psstad6f3fieqn3.gif\"></inline-graphic></inline-formula> G. The frequency of the instability exhibits a linear dependence with magnetic field strength, and the wave amplitude has a radial maximum that would match the location of a conical density structure, i.e. high-density cones. For all of the magnetic field cases analysed, the high-frequency spectra showed upper and lower sidebands centred around the driving frequency and at a separation equal to the instability frequency, 27.12 MHz<inline-formula>\n<tex-math><?CDATA $\\,\\pm\\,f_\\mathrm{I}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mo>±</mml:mo><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">I</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"psstad6f3fieqn4.gif\"></inline-graphic></inline-formula> kHz. Measurements of the perpendicular wavenumber would satisfy, for certain magnetic field strengths, the dispersion relation of both an electrostatic ion cyclotron wave (ICW) and of an ion acoustic wave. It is hypothesised that the observed low-frequency wave could be an acoustic-like instability propagating perpendicular to the magnetic field, which develops as an ICW at some magnetic field strengths. From the data collected, it is suggested that the high-frequency sidebands may be caused by modulation of the low-frequency wave.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of a low-frequency ion instability in a magnetic nozzle\",\"authors\":\"A Caldarelli, F Filleul, K Takahashi, R W Boswell, C Charles, J E Cater, N Rattenbury\",\"doi\":\"10.1088/1361-6595/ad6f3f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-frequency ion instability, with frequency <inline-formula>\\n<tex-math><?CDATA $f_\\\\mathrm{I}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mi mathvariant=\\\"normal\\\">I</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"psstad6f3fieqn1.gif\\\"></inline-graphic></inline-formula> between the ion gyrofrequency and the lower hybrid frequency <inline-formula>\\n<tex-math><?CDATA $f_\\\\mathrm{c,i} \\\\lt f_\\\\mathrm{I} \\\\ll f_\\\\mathrm{LH}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mi mathvariant=\\\"normal\\\">c</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant=\\\"normal\\\">i</mml:mi></mml:mrow></mml:msub><mml:mo>&lt;</mml:mo><mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mi mathvariant=\\\"normal\\\">I</mml:mi></mml:mrow></mml:msub><mml:mo>≪</mml:mo><mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mi>LH</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"psstad6f3fieqn2.gif\\\"></inline-graphic></inline-formula>, is detected in an argon plasma expanding in a magnetic nozzle for magnetic fields between <inline-formula>\\n<tex-math><?CDATA $240\\\\lt B_{z\\\\mathrm{,max}}\\\\lt 700$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>240</mml:mn><mml:mo>&lt;</mml:mo><mml:msub><mml:mi>B</mml:mi><mml:mrow><mml:mi>z</mml:mi><mml:mrow><mml:mo>,</mml:mo><mml:mi>max</mml:mi></mml:mrow></mml:mrow></mml:msub><mml:mo>&lt;</mml:mo><mml:mn>700</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"psstad6f3fieqn3.gif\\\"></inline-graphic></inline-formula> G. The frequency of the instability exhibits a linear dependence with magnetic field strength, and the wave amplitude has a radial maximum that would match the location of a conical density structure, i.e. high-density cones. For all of the magnetic field cases analysed, the high-frequency spectra showed upper and lower sidebands centred around the driving frequency and at a separation equal to the instability frequency, 27.12 MHz<inline-formula>\\n<tex-math><?CDATA $\\\\,\\\\pm\\\\,f_\\\\mathrm{I}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mo>±</mml:mo><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mi mathvariant=\\\"normal\\\">I</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"psstad6f3fieqn4.gif\\\"></inline-graphic></inline-formula> kHz. Measurements of the perpendicular wavenumber would satisfy, for certain magnetic field strengths, the dispersion relation of both an electrostatic ion cyclotron wave (ICW) and of an ion acoustic wave. It is hypothesised that the observed low-frequency wave could be an acoustic-like instability propagating perpendicular to the magnetic field, which develops as an ICW at some magnetic field strengths. From the data collected, it is suggested that the high-frequency sidebands may be caused by modulation of the low-frequency wave.\",\"PeriodicalId\":20192,\"journal\":{\"name\":\"Plasma Sources Science and Technology\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Sources Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6595/ad6f3f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad6f3f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在磁性喷嘴中膨胀的氩等离子体中检测到了低频离子不稳定性,其频率fI介于离子陀螺频率和较低的混合频率fc,i<fI≪fLH之间,磁场强度在240<Bz,max<700 G之间。在分析的所有磁场情况下,高频频谱都显示出以驱动频率为中心的上下边带,其间隔等于不稳定频率(27.12 MHz±fI kHz)。在某些磁场强度下,垂直波长的测量结果符合静电离子回旋波(ICW)和离子声波的频散关系。根据假设,观测到的低频波可能是垂直于磁场传播的类似声波的不稳定性,在某些磁场强度下会发展成 ICW。从收集到的数据来看,高频边带可能是由低频波的调制引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of a low-frequency ion instability in a magnetic nozzle
A low-frequency ion instability, with frequency fI between the ion gyrofrequency and the lower hybrid frequency fc,i<fIfLH, is detected in an argon plasma expanding in a magnetic nozzle for magnetic fields between 240<Bz,max<700 G. The frequency of the instability exhibits a linear dependence with magnetic field strength, and the wave amplitude has a radial maximum that would match the location of a conical density structure, i.e. high-density cones. For all of the magnetic field cases analysed, the high-frequency spectra showed upper and lower sidebands centred around the driving frequency and at a separation equal to the instability frequency, 27.12 MHz ±fI kHz. Measurements of the perpendicular wavenumber would satisfy, for certain magnetic field strengths, the dispersion relation of both an electrostatic ion cyclotron wave (ICW) and of an ion acoustic wave. It is hypothesised that the observed low-frequency wave could be an acoustic-like instability propagating perpendicular to the magnetic field, which develops as an ICW at some magnetic field strengths. From the data collected, it is suggested that the high-frequency sidebands may be caused by modulation of the low-frequency wave.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ThunderBoltz: an open-source direct simulation Monte Carlo Boltzmann solver for plasma transport, chemical kinetics, and 0D modeling Kinetic investigation of discharge performance for Xe, Kr, and Ar in a miniature ion thruster using a fast converging PIC-MCC-DSMC model Ground experimental study of the electron density of plasma sheath reduced by pulsed discharge Breakdown modes of capacitively coupled plasma: I. Transitions from glow discharge to multipactor Breakdown modes of capacitively coupled plasma: II. Non-self-sustained discharges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1