无氧化剂条件下镍钴氧化物-纳米粒子催化的微波辅助伯醇直接氧化成羧酸的脱氢反应

IF 1.7 4区 化学 Q3 CHEMISTRY, ORGANIC Synlett Pub Date : 2024-09-09 DOI:10.1055/a-2384-6371
Kumari Anchal, Ashok R. Patel, Subhash Banerjee
{"title":"无氧化剂条件下镍钴氧化物-纳米粒子催化的微波辅助伯醇直接氧化成羧酸的脱氢反应","authors":"Kumari Anchal, Ashok R. Patel, Subhash Banerjee","doi":"10.1055/a-2384-6371","DOIUrl":null,"url":null,"abstract":"<p>Here, we report the NiCo<sub>2</sub>O<sub>4</sub>-nanoparticle-catalyzed dehydrogenative direct oxidation of primary alcohols to carboxylic acid in the presence of KOH under microwave irradiation in the absence of any oxidant in good to excellent yields (75–99%) within a short reaction time (5–10 min). The polycrystalline cubic spinel phase of NiCo<sub>2</sub>O<sub>4</sub> nanoparticles (NPs) with an average size of 25 nm were synthesized by the co-precipitation method and analyzed properly by using powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy measurements. The NiCo<sub>2</sub>O<sub>4</sub> NPs were stable under the reaction conditions and reused for up to eight cycles without appreciable loss in the yield of benzoic acid. According to mechanistic insight, the KOH acts as a second oxygen source and is essential for the synthesis of carboxylic acid from alcohols. The hydrogen gas was found to be the only byproduct of this method detected by chemical reactions.</p> ","PeriodicalId":22319,"journal":{"name":"Synlett","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NiCo2O4-Nanoparticle-Catalyzed Microwave-Assisted Dehydrogenative Direct Oxidation of Primary Alcohols to Carboxylic Acids under Oxidant-Free Conditions\",\"authors\":\"Kumari Anchal, Ashok R. Patel, Subhash Banerjee\",\"doi\":\"10.1055/a-2384-6371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Here, we report the NiCo<sub>2</sub>O<sub>4</sub>-nanoparticle-catalyzed dehydrogenative direct oxidation of primary alcohols to carboxylic acid in the presence of KOH under microwave irradiation in the absence of any oxidant in good to excellent yields (75–99%) within a short reaction time (5–10 min). The polycrystalline cubic spinel phase of NiCo<sub>2</sub>O<sub>4</sub> nanoparticles (NPs) with an average size of 25 nm were synthesized by the co-precipitation method and analyzed properly by using powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy measurements. The NiCo<sub>2</sub>O<sub>4</sub> NPs were stable under the reaction conditions and reused for up to eight cycles without appreciable loss in the yield of benzoic acid. According to mechanistic insight, the KOH acts as a second oxygen source and is essential for the synthesis of carboxylic acid from alcohols. The hydrogen gas was found to be the only byproduct of this method detected by chemical reactions.</p> \",\"PeriodicalId\":22319,\"journal\":{\"name\":\"Synlett\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synlett\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2384-6371\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synlett","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1055/a-2384-6371","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们报告了在微波辐照下,在没有任何氧化剂的情况下,NiCo2O4 纳米粒子催化伯醇直接氧化成羧酸的脱氢反应,在很短的反应时间(5-10 分钟)内就获得了良好到极佳的产率(75-99%)。共沉淀法合成了平均粒径为 25 nm 的多晶立方尖晶石相 NiCo2O4 纳米粒子(NPs),并通过粉末 X 射线衍射、场发射扫描电子显微镜、能量色散 X 射线光谱和透射电子显微镜测量进行了正确分析。NiCo2O4 NPs 在反应条件下非常稳定,可重复使用八次,苯甲酸的产率没有明显下降。根据机理分析,KOH 可作为第二氧气源,是醇类合成羧酸的关键。氢气是该方法通过化学反应检测到的唯一副产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NiCo2O4-Nanoparticle-Catalyzed Microwave-Assisted Dehydrogenative Direct Oxidation of Primary Alcohols to Carboxylic Acids under Oxidant-Free Conditions

Here, we report the NiCo2O4-nanoparticle-catalyzed dehydrogenative direct oxidation of primary alcohols to carboxylic acid in the presence of KOH under microwave irradiation in the absence of any oxidant in good to excellent yields (75–99%) within a short reaction time (5–10 min). The polycrystalline cubic spinel phase of NiCo2O4 nanoparticles (NPs) with an average size of 25 nm were synthesized by the co-precipitation method and analyzed properly by using powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy measurements. The NiCo2O4 NPs were stable under the reaction conditions and reused for up to eight cycles without appreciable loss in the yield of benzoic acid. According to mechanistic insight, the KOH acts as a second oxygen source and is essential for the synthesis of carboxylic acid from alcohols. The hydrogen gas was found to be the only byproduct of this method detected by chemical reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synlett
Synlett 化学-有机化学
CiteScore
3.40
自引率
5.00%
发文量
369
审稿时长
1 months
期刊介绍: SYNLETT is an international journal reporting research results and current trends in chemical synthesis in short personalized reviews and preliminary communications. It covers all fields of scientific endeavor that involve organic synthesis, including catalysis, organometallic, medicinal, biological, and photochemistry, but also related disciplines and offers the possibility to publish scientific primary data.
期刊最新文献
Skeletal Reorganization: Approaches towards the Synthesis of Aza-Heterocyclic Cores Synthesis of Phosphorodiamidate Morpholino Oligonucleotides (PMOs) Using Staudinger Reduction as a Deblocking Condition and Its Usefulness for Orthogonal Conjugation in Bi- and Trifunctionalized PMOs Sequential Copper-Catalyzed Amidation and Hydroxylation for Acetaminophen Synthesis Design and Synthesis of Out/Out, Out/In, and In/In Epoxides in Polycyclic Cage Frameworks Design of Molecular Diversity by Olefin Metathesis in Tandem with Other Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1