通过相位肖像素描主动符号化发现常微分方程

Nan Jiang, Md Nasim, Yexiang Xue
{"title":"通过相位肖像素描主动符号化发现常微分方程","authors":"Nan Jiang, Md Nasim, Yexiang Xue","doi":"arxiv-2409.01416","DOIUrl":null,"url":null,"abstract":"Discovering Ordinary Differential Equations (ODEs) from trajectory data is a\ncrucial task in AI-driven scientific discovery. Recent methods for symbolic\ndiscovery of ODEs primarily rely on fixed training datasets collected a-priori,\noften leading to suboptimal performance, as observed in our experiments in\nFigure 1. Inspired by active learning, we explore methods for querying\ninformative trajectory data to evaluate predicted ODEs, where data are obtained\nby the specified initial conditions of the trajectory. Chaos theory indicates\nthat small changes in the initial conditions of a dynamical system can result\nin vastly different trajectories, necessitating the maintenance of a large set\nof initial conditions of the trajectory. To address this challenge, we\nintroduce Active Symbolic Discovery of Ordinary Differential Equations via\nPhase Portrait Sketching (APPS). Instead of directly selecting individual\ninitial conditions, APPS first identifies an informative region and samples a\nbatch of initial conditions within that region. Compared to traditional active\nlearning methods, APPS eliminates the need for maintaining a large amount of\ndata. Extensive experiments demonstrate that APPS consistently discovers more\naccurate ODE expressions than baseline methods using passively collected\ndatasets.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching\",\"authors\":\"Nan Jiang, Md Nasim, Yexiang Xue\",\"doi\":\"arxiv-2409.01416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering Ordinary Differential Equations (ODEs) from trajectory data is a\\ncrucial task in AI-driven scientific discovery. Recent methods for symbolic\\ndiscovery of ODEs primarily rely on fixed training datasets collected a-priori,\\noften leading to suboptimal performance, as observed in our experiments in\\nFigure 1. Inspired by active learning, we explore methods for querying\\ninformative trajectory data to evaluate predicted ODEs, where data are obtained\\nby the specified initial conditions of the trajectory. Chaos theory indicates\\nthat small changes in the initial conditions of a dynamical system can result\\nin vastly different trajectories, necessitating the maintenance of a large set\\nof initial conditions of the trajectory. To address this challenge, we\\nintroduce Active Symbolic Discovery of Ordinary Differential Equations via\\nPhase Portrait Sketching (APPS). Instead of directly selecting individual\\ninitial conditions, APPS first identifies an informative region and samples a\\nbatch of initial conditions within that region. Compared to traditional active\\nlearning methods, APPS eliminates the need for maintaining a large amount of\\ndata. Extensive experiments demonstrate that APPS consistently discovers more\\naccurate ODE expressions than baseline methods using passively collected\\ndatasets.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从轨迹数据中发现常微分方程(ODE)是人工智能驱动的科学发现中的一项重要任务。最近用于符号发现 ODE 的方法主要依赖于事先收集的固定训练数据集,这往往会导致性能不理想,正如我们在图 1 中的实验所观察到的那样。受主动学习的启发,我们探索了查询信息轨迹数据以评估预测的 ODE 的方法,其中数据是通过指定的轨迹初始条件获得的。混沌理论表明,动态系统初始条件的微小变化都可能导致轨迹的巨大差异,因此有必要维护大量的轨迹初始条件集。为了应对这一挑战,我们引入了通过相位肖像草图(APPS)主动发现常微分方程的符号方法(Active Symbolic Discovery of Ordinary Differential Equations viaPhase Portrait Sketching)。APPS 不直接选择单个初始条件,而是首先确定一个信息区域,然后在该区域内对一批初始条件进行采样。与传统的主动学习方法相比,APPS 无需维护大量数据。大量实验证明,与使用被动收集数据集的基线方法相比,APPS 始终能发现更精确的 ODE 表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
Discovering Ordinary Differential Equations (ODEs) from trajectory data is a crucial task in AI-driven scientific discovery. Recent methods for symbolic discovery of ODEs primarily rely on fixed training datasets collected a-priori, often leading to suboptimal performance, as observed in our experiments in Figure 1. Inspired by active learning, we explore methods for querying informative trajectory data to evaluate predicted ODEs, where data are obtained by the specified initial conditions of the trajectory. Chaos theory indicates that small changes in the initial conditions of a dynamical system can result in vastly different trajectories, necessitating the maintenance of a large set of initial conditions of the trajectory. To address this challenge, we introduce Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching (APPS). Instead of directly selecting individual initial conditions, APPS first identifies an informative region and samples a batch of initial conditions within that region. Compared to traditional active learning methods, APPS eliminates the need for maintaining a large amount of data. Extensive experiments demonstrate that APPS consistently discovers more accurate ODE expressions than baseline methods using passively collected datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1