布尔矩阵逻辑编程

Lun Ai, Stephen H. Muggleton
{"title":"布尔矩阵逻辑编程","authors":"Lun Ai, Stephen H. Muggleton","doi":"arxiv-2408.10369","DOIUrl":null,"url":null,"abstract":"We describe a datalog query evaluation approach based on efficient and\ncomposable boolean matrix manipulation modules. We first define an overarching\nproblem, Boolean Matrix Logic Programming (BMLP), which uses boolean matrices\nas an alternative computation to evaluate datalog programs. We develop two\nnovel BMLP modules for bottom-up inferences on linear dyadic recursive datalog\nprograms, and show how additional modules can extend this capability to compute\nboth linear and non-linear recursive datalog programs of arity two. Our\nempirical results demonstrate that these modules outperform general-purpose and\nspecialised systems by factors of 30x and 9x, respectively, when evaluating\nlarge programs with millions of facts. This boolean matrix approach\nsignificantly enhances the efficiency of datalog querying to support logic\nprogramming techniques.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boolean Matrix Logic Programming\",\"authors\":\"Lun Ai, Stephen H. Muggleton\",\"doi\":\"arxiv-2408.10369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a datalog query evaluation approach based on efficient and\\ncomposable boolean matrix manipulation modules. We first define an overarching\\nproblem, Boolean Matrix Logic Programming (BMLP), which uses boolean matrices\\nas an alternative computation to evaluate datalog programs. We develop two\\nnovel BMLP modules for bottom-up inferences on linear dyadic recursive datalog\\nprograms, and show how additional modules can extend this capability to compute\\nboth linear and non-linear recursive datalog programs of arity two. Our\\nempirical results demonstrate that these modules outperform general-purpose and\\nspecialised systems by factors of 30x and 9x, respectively, when evaluating\\nlarge programs with millions of facts. This boolean matrix approach\\nsignificantly enhances the efficiency of datalog querying to support logic\\nprogramming techniques.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种基于高效和可组合布尔矩阵操作模块的数据模型查询评估方法。我们首先定义了一个总体问题,即布尔矩阵逻辑编程(BMLP),它使用布尔矩阵作为评估数据模型程序的另一种计算方法。我们开发了两级 BMLP 模块,用于对线性二元递归数据模型程序进行自下而上的推理,并展示了附加模块如何将这一能力扩展到计算线性和非线性递归数据模型程序。实证结果表明,在评估具有数百万事实的大型程序时,这些模块的性能分别是通用系统和专用系统的 30 倍和 9 倍。这种布尔矩阵方法显著提高了数据模型查询的效率,从而支持逻辑编程技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boolean Matrix Logic Programming
We describe a datalog query evaluation approach based on efficient and composable boolean matrix manipulation modules. We first define an overarching problem, Boolean Matrix Logic Programming (BMLP), which uses boolean matrices as an alternative computation to evaluate datalog programs. We develop two novel BMLP modules for bottom-up inferences on linear dyadic recursive datalog programs, and show how additional modules can extend this capability to compute both linear and non-linear recursive datalog programs of arity two. Our empirical results demonstrate that these modules outperform general-purpose and specialised systems by factors of 30x and 9x, respectively, when evaluating large programs with millions of facts. This boolean matrix approach significantly enhances the efficiency of datalog querying to support logic programming techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1