ImputeHiFI:利用单细胞 Hi-C 和 RNA FISH 数据的多重 DNA FISH 数据推算方法

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-09-12 DOI:10.1002/advs.202406364
Shichen Fan, Dachang Dang, Lin Gao, Shihua Zhang
{"title":"ImputeHiFI:利用单细胞 Hi-C 和 RNA FISH 数据的多重 DNA FISH 数据推算方法","authors":"Shichen Fan, Dachang Dang, Lin Gao, Shihua Zhang","doi":"10.1002/advs.202406364","DOIUrl":null,"url":null,"abstract":"Although multiplexed DNA fluorescence in situ hybridization (FISH) enables tracking the spatial localization of thousands of genomic loci using probes within individual cells, the high rates of undetected probes impede the depiction of 3D chromosome structures. Current data imputation methods neither utilize single‐cell Hi‐C data, which elucidate 3D genome architectures using sequencing nor leverage multimodal RNA FISH data that reflect cell‐type information, limiting the effectiveness of these methods in complex tissues such as the mouse brain. To this end, a novel multiplexed DNA FISH imputation method named ImputeHiFI is proposed, which fully utilizes the complementary structural information from single‐cell Hi‐C data and the cell type signature from RNA FISH data to obtain a high‐fidelity and complete spatial location of chromatin loci. ImputeHiFI enhances cell clustering, compartment identification, and cell subtype detection at the single‐cell level in the mouse brain. ImputeHiFI improves the recognition of cell‐type‐specific loops in three high‐resolution datasets. In short, ImputeHiFI is a powerful tool capable of imputing multiplexed DNA FISH data from various resolutions and imaging protocols, facilitating studies of 3D genome structures and functions.","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ImputeHiFI: An Imputation Method for Multiplexed DNA FISH Data by Utilizing Single‐Cell Hi‐C and RNA FISH Data\",\"authors\":\"Shichen Fan, Dachang Dang, Lin Gao, Shihua Zhang\",\"doi\":\"10.1002/advs.202406364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although multiplexed DNA fluorescence in situ hybridization (FISH) enables tracking the spatial localization of thousands of genomic loci using probes within individual cells, the high rates of undetected probes impede the depiction of 3D chromosome structures. Current data imputation methods neither utilize single‐cell Hi‐C data, which elucidate 3D genome architectures using sequencing nor leverage multimodal RNA FISH data that reflect cell‐type information, limiting the effectiveness of these methods in complex tissues such as the mouse brain. To this end, a novel multiplexed DNA FISH imputation method named ImputeHiFI is proposed, which fully utilizes the complementary structural information from single‐cell Hi‐C data and the cell type signature from RNA FISH data to obtain a high‐fidelity and complete spatial location of chromatin loci. ImputeHiFI enhances cell clustering, compartment identification, and cell subtype detection at the single‐cell level in the mouse brain. ImputeHiFI improves the recognition of cell‐type‐specific loops in three high‐resolution datasets. In short, ImputeHiFI is a powerful tool capable of imputing multiplexed DNA FISH data from various resolutions and imaging protocols, facilitating studies of 3D genome structures and functions.\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202406364\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202406364","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

虽然多倍 DNA 荧光原位杂交(FISH)可以在单个细胞内使用探针跟踪数千个基因组位点的空间定位,但未检测到探针的高比率阻碍了三维染色体结构的描述。目前的数据估算方法既没有利用单细胞 Hi-C 数据(通过测序阐明三维基因组结构),也没有利用反映细胞类型信息的多模态 RNA FISH 数据,从而限制了这些方法在小鼠大脑等复杂组织中的有效性。为此,我们提出了一种名为 ImputeHiFI 的新型多重 DNA FISH 估算方法,它充分利用了单细胞 Hi-C 数据的互补结构信息和 RNA FISH 数据的细胞类型特征,从而获得高保真和完整的染色质位点空间定位。ImputeHiFI 增强了小鼠大脑单细胞水平的细胞聚类、区隔识别和细胞亚型检测能力。ImputeHiFI 提高了三个高分辨率数据集中细胞类型特异性环路的识别能力。简而言之,ImputeHiFI 是一种功能强大的工具,它能够对来自不同分辨率和成像协议的多重 DNA FISH 数据进行归因,从而促进三维基因组结构和功能的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ImputeHiFI: An Imputation Method for Multiplexed DNA FISH Data by Utilizing Single‐Cell Hi‐C and RNA FISH Data
Although multiplexed DNA fluorescence in situ hybridization (FISH) enables tracking the spatial localization of thousands of genomic loci using probes within individual cells, the high rates of undetected probes impede the depiction of 3D chromosome structures. Current data imputation methods neither utilize single‐cell Hi‐C data, which elucidate 3D genome architectures using sequencing nor leverage multimodal RNA FISH data that reflect cell‐type information, limiting the effectiveness of these methods in complex tissues such as the mouse brain. To this end, a novel multiplexed DNA FISH imputation method named ImputeHiFI is proposed, which fully utilizes the complementary structural information from single‐cell Hi‐C data and the cell type signature from RNA FISH data to obtain a high‐fidelity and complete spatial location of chromatin loci. ImputeHiFI enhances cell clustering, compartment identification, and cell subtype detection at the single‐cell level in the mouse brain. ImputeHiFI improves the recognition of cell‐type‐specific loops in three high‐resolution datasets. In short, ImputeHiFI is a powerful tool capable of imputing multiplexed DNA FISH data from various resolutions and imaging protocols, facilitating studies of 3D genome structures and functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Black Phosphorus Tagged Responsive Strontium Hydrogel Particles for Bone Defect Repair. Bone-Targeted Fluoropeptide Nanoparticle Inhibits NF-κB Signaling to Treat Osteosarcoma and Tumor-Induced Bone Destruction. Identifying Multiomic Signatures of X-Linked Retinoschisis-Derived Retinal Organoids and Mice Harboring Patient-Specific Mutation Using Spatiotemporal Single-Cell Transcriptomics. Perovskite Thin-Film Transistors for Ultra-Low-Voltage Neuromorphic Visions. Pyroptosis-Inducing Biomaterials Pave the Way for Transformative Antitumor Immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1