Limosilactobacillus 调节微生物群落,以高效的一步法联合生产 H2 和 CH4 来克服水解瓶颈

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-09-12 DOI:10.1002/advs.202406119
Heng Wu, Huaiwen Zhang, Ruixiao Yan, Suqi Li, Xiaohui Guo, Ling Qiu, Yiqing Yao
{"title":"Limosilactobacillus 调节微生物群落,以高效的一步法联合生产 H2 和 CH4 来克服水解瓶颈","authors":"Heng Wu, Huaiwen Zhang, Ruixiao Yan, Suqi Li, Xiaohui Guo, Ling Qiu, Yiqing Yao","doi":"10.1002/advs.202406119","DOIUrl":null,"url":null,"abstract":"The efficient co‐production of H<jats:sub>2</jats:sub> and CH<jats:sub>4</jats:sub> via anaerobic digestion (AD) requires separate stages, as it cannot yet be achieved in one step. Lactic acid bacteria (LAB) (<jats:italic>Limosilactobacillus</jats:italic>) release H<jats:sub>2</jats:sub> and acetate by enhancing hydrolysis, potentially increasing CH<jats:sub>4</jats:sub> production with simultaneous H<jats:sub>2</jats:sub> accumulation. This study investigated the enhanced effect of one‐step co‐production of H<jats:sub>2</jats:sub> and CH<jats:sub>4</jats:sub> in AD by LAB and elucidated its enhancement mechanisms. The results showed that 236.3 times increase in H<jats:sub>2</jats:sub> production and 7.1 times increase in CH<jats:sub>4</jats:sub> production are achieved, resulting in profits of 469.39 USD. Model substrates lignocellulosic straw, sodium acetate, and H<jats:sub>2</jats:sub> confirmes LAB work on the hydrolysis stage and subsequent sustainable volatile fatty acid production during the first 6 days of AD. In this stage, the enrichment of <jats:italic>Limosilactobacillus</jats:italic> carrying <jats:italic>bglB</jats:italic> and <jats:italic>xynB</jats:italic>, the glycolysis pathway, and the high activity of protease, acetate kinase, and [FeFe] hydrogenase, jointly achieved rapid acetate and H<jats:sub>2</jats:sub> accumulation, driving hydrogenotrophic methanogenesis dominated. From day 7 to 24, with enriched <jats:italic>Methanosarcina</jats:italic>, and increased methenyltetrahydromethanopterin hydrogenase activity, continuously produced acetate led to the mainly acetoclastic methanogenesis shift from hydrogenotrophic methanogenesis. The power generation capacity of LAB‐enhanced AD is 333.33 times that of China's 24,000 m<jats:sup>3</jats:sup> biogas plant.","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limosilactobacillus Regulating Microbial Communities to Overcome the Hydrolysis Bottleneck with Efficient One‐Step Co‐Production of H2 and CH4\",\"authors\":\"Heng Wu, Huaiwen Zhang, Ruixiao Yan, Suqi Li, Xiaohui Guo, Ling Qiu, Yiqing Yao\",\"doi\":\"10.1002/advs.202406119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficient co‐production of H<jats:sub>2</jats:sub> and CH<jats:sub>4</jats:sub> via anaerobic digestion (AD) requires separate stages, as it cannot yet be achieved in one step. Lactic acid bacteria (LAB) (<jats:italic>Limosilactobacillus</jats:italic>) release H<jats:sub>2</jats:sub> and acetate by enhancing hydrolysis, potentially increasing CH<jats:sub>4</jats:sub> production with simultaneous H<jats:sub>2</jats:sub> accumulation. This study investigated the enhanced effect of one‐step co‐production of H<jats:sub>2</jats:sub> and CH<jats:sub>4</jats:sub> in AD by LAB and elucidated its enhancement mechanisms. The results showed that 236.3 times increase in H<jats:sub>2</jats:sub> production and 7.1 times increase in CH<jats:sub>4</jats:sub> production are achieved, resulting in profits of 469.39 USD. Model substrates lignocellulosic straw, sodium acetate, and H<jats:sub>2</jats:sub> confirmes LAB work on the hydrolysis stage and subsequent sustainable volatile fatty acid production during the first 6 days of AD. In this stage, the enrichment of <jats:italic>Limosilactobacillus</jats:italic> carrying <jats:italic>bglB</jats:italic> and <jats:italic>xynB</jats:italic>, the glycolysis pathway, and the high activity of protease, acetate kinase, and [FeFe] hydrogenase, jointly achieved rapid acetate and H<jats:sub>2</jats:sub> accumulation, driving hydrogenotrophic methanogenesis dominated. From day 7 to 24, with enriched <jats:italic>Methanosarcina</jats:italic>, and increased methenyltetrahydromethanopterin hydrogenase activity, continuously produced acetate led to the mainly acetoclastic methanogenesis shift from hydrogenotrophic methanogenesis. The power generation capacity of LAB‐enhanced AD is 333.33 times that of China's 24,000 m<jats:sup>3</jats:sup> biogas plant.\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202406119\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202406119","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过厌氧消化(AD)高效地同时产生 H2 和 CH4 需要不同的阶段,因为还不能一步到位。乳酸菌(LAB)(Limosilactobacillus)通过加强水解作用释放出 H2 和醋酸盐,从而有可能在积累 H2 的同时增加 CH4 的产生。本研究调查了 LAB 在厌氧消化(AD)中一步法联合生产 H2 和 CH4 的增强效果,并阐明了其增强机制。结果表明,H2 产量增加了 236.3 倍,CH4 产量增加了 7.1 倍,利润达 469.39 美元。模型基质木质纤维素秸秆、醋酸钠和 H2 证实了实验室在水解阶段的工作,以及随后在厌氧消化(AD)前 6 天的可持续挥发性脂肪酸生产。在这一阶段,携带 bglB 和 xynB、糖酵解途径和高活性蛋白酶、醋酸激酶和[FeFe]氢酶的 Limosilactobacillus 的富集共同实现了醋酸和 H2 的快速积累,驱动了以养氢型产甲烷为主的产甲烷过程。从第 7 天到第 24 天,随着甲烷菌的富集和甲烷四氢蝶呤氢酶活性的提高,持续产生的乙酸导致以乙酸菌为主的甲烷发生从养氢型甲烷发生转变为以乙酸菌为主的甲烷发生。LAB 增强型厌氧消化(AD)的发电能力是中国 2.4 万立方米沼气厂发电能力的 333.33 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Limosilactobacillus Regulating Microbial Communities to Overcome the Hydrolysis Bottleneck with Efficient One‐Step Co‐Production of H2 and CH4
The efficient co‐production of H2 and CH4 via anaerobic digestion (AD) requires separate stages, as it cannot yet be achieved in one step. Lactic acid bacteria (LAB) (Limosilactobacillus) release H2 and acetate by enhancing hydrolysis, potentially increasing CH4 production with simultaneous H2 accumulation. This study investigated the enhanced effect of one‐step co‐production of H2 and CH4 in AD by LAB and elucidated its enhancement mechanisms. The results showed that 236.3 times increase in H2 production and 7.1 times increase in CH4 production are achieved, resulting in profits of 469.39 USD. Model substrates lignocellulosic straw, sodium acetate, and H2 confirmes LAB work on the hydrolysis stage and subsequent sustainable volatile fatty acid production during the first 6 days of AD. In this stage, the enrichment of Limosilactobacillus carrying bglB and xynB, the glycolysis pathway, and the high activity of protease, acetate kinase, and [FeFe] hydrogenase, jointly achieved rapid acetate and H2 accumulation, driving hydrogenotrophic methanogenesis dominated. From day 7 to 24, with enriched Methanosarcina, and increased methenyltetrahydromethanopterin hydrogenase activity, continuously produced acetate led to the mainly acetoclastic methanogenesis shift from hydrogenotrophic methanogenesis. The power generation capacity of LAB‐enhanced AD is 333.33 times that of China's 24,000 m3 biogas plant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Black Phosphorus Tagged Responsive Strontium Hydrogel Particles for Bone Defect Repair. Bone-Targeted Fluoropeptide Nanoparticle Inhibits NF-κB Signaling to Treat Osteosarcoma and Tumor-Induced Bone Destruction. Identifying Multiomic Signatures of X-Linked Retinoschisis-Derived Retinal Organoids and Mice Harboring Patient-Specific Mutation Using Spatiotemporal Single-Cell Transcriptomics. Perovskite Thin-Film Transistors for Ultra-Low-Voltage Neuromorphic Visions. Pyroptosis-Inducing Biomaterials Pave the Way for Transformative Antitumor Immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1