大脑是如何计算概率的?

Ralf M. Haefner, Jeff Beck, Cristina Savin, Mehrdad Salmasi, Xaq Pitkow
{"title":"大脑是如何计算概率的?","authors":"Ralf M. Haefner, Jeff Beck, Cristina Savin, Mehrdad Salmasi, Xaq Pitkow","doi":"arxiv-2409.02709","DOIUrl":null,"url":null,"abstract":"This perspective piece is the result of a Generative Adversarial\nCollaboration (GAC) tackling the question `How does neural activity represent\nprobability distributions?'. We have addressed three major obstacles to\nprogress on answering this question: first, we provide a unified language for\ndefining competing hypotheses. Second, we explain the fundamentals of three\nprominent proposals for probabilistic computations -- Probabilistic Population\nCodes (PPCs), Distributed Distributional Codes (DDCs), and Neural Sampling\nCodes (NSCs) -- and describe similarities and differences in that common\nlanguage. Third, we review key empirical data previously taken as evidence for\nat least one of these proposal, and describe how it may or may not be\nexplainable by alternative proposals. Finally, we describe some key challenges\nin resolving the debate, and propose potential directions to address them\nthrough a combination of theory and experiments.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How does the brain compute with probabilities?\",\"authors\":\"Ralf M. Haefner, Jeff Beck, Cristina Savin, Mehrdad Salmasi, Xaq Pitkow\",\"doi\":\"arxiv-2409.02709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This perspective piece is the result of a Generative Adversarial\\nCollaboration (GAC) tackling the question `How does neural activity represent\\nprobability distributions?'. We have addressed three major obstacles to\\nprogress on answering this question: first, we provide a unified language for\\ndefining competing hypotheses. Second, we explain the fundamentals of three\\nprominent proposals for probabilistic computations -- Probabilistic Population\\nCodes (PPCs), Distributed Distributional Codes (DDCs), and Neural Sampling\\nCodes (NSCs) -- and describe similarities and differences in that common\\nlanguage. Third, we review key empirical data previously taken as evidence for\\nat least one of these proposal, and describe how it may or may not be\\nexplainable by alternative proposals. Finally, we describe some key challenges\\nin resolving the debate, and propose potential directions to address them\\nthrough a combination of theory and experiments.\",\"PeriodicalId\":501517,\"journal\":{\"name\":\"arXiv - QuanBio - Neurons and Cognition\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本视角文章是生成对抗合作(GAC)的成果,旨在解决 "神经活动如何代表概率分布?我们解决了回答这一问题的三大障碍:首先,我们提供了一种统一的语言来定义相互竞争的假设。其次,我们解释了三种著名的概率计算建议--概率种群代码(Probabilistic PopulationCodes,PPCs)、分布式分布代码(Distributed Distributional Codes,DDCs)和神经采样代码(Neural SamplingCodes,NSCs)--的基本原理,并描述了这种通用语言的异同。第三,我们回顾了之前被当作至少其中一种提议的证据的关键经验数据,并描述了替代提议如何解释或无法解释这些数据。最后,我们描述了解决争论的一些关键挑战,并提出了通过理论与实验相结合来解决这些挑战的潜在方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How does the brain compute with probabilities?
This perspective piece is the result of a Generative Adversarial Collaboration (GAC) tackling the question `How does neural activity represent probability distributions?'. We have addressed three major obstacles to progress on answering this question: first, we provide a unified language for defining competing hypotheses. Second, we explain the fundamentals of three prominent proposals for probabilistic computations -- Probabilistic Population Codes (PPCs), Distributed Distributional Codes (DDCs), and Neural Sampling Codes (NSCs) -- and describe similarities and differences in that common language. Third, we review key empirical data previously taken as evidence for at least one of these proposal, and describe how it may or may not be explainable by alternative proposals. Finally, we describe some key challenges in resolving the debate, and propose potential directions to address them through a combination of theory and experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification Identifying Influential nodes in Brain Networks via Self-Supervised Graph-Transformer Contrastive Learning in Memristor-based Neuromorphic Systems Self-Attention Limits Working Memory Capacity of Transformer-Based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1