通过氧化-交联策略提高半焦基硬碳阳极的电化学性能,用于低成本钠离子电池

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Energy Pub Date : 2024-08-26 DOI:10.1002/cey2.584
Huizhen Ma, Yakun Tang, Bin Tang, Yue Zhang, Limin Deng, Lang Liu, Sen Dong, Yuliang Cao
{"title":"通过氧化-交联策略提高半焦基硬碳阳极的电化学性能,用于低成本钠离子电池","authors":"Huizhen Ma, Yakun Tang, Bin Tang, Yue Zhang, Limin Deng, Lang Liu, Sen Dong, Yuliang Cao","doi":"10.1002/cey2.584","DOIUrl":null,"url":null,"abstract":"Semicoke, a coal pyrolysis product, is a cost-effective and high-yield precursor for hard carbon used as anode in sodium-ion batteries (SIBs). However, as a thermoplastic precursor, semicoke inevitably graphitizes during high-temperature carbonization, so it is not easy to form the hard carbon structure. Herein, we propose an oxidation-crosslinking strategy to realize fusion-to-solid-state pyrolysis of semicoke. The semicoke is first preoxidized using a modified alkali-oxygen oxidation method to enrich its surface with carboxyl groups, which are localization points and the cross-linking reactions occur with citric acid to build the semicoke precursor with homogeneous and abundant -C-(O)–O- groups (up to 21 at% oxygen content). The -C-(O)–O- groups effectively prevent the rearrangement of carbon microcrystals in semicoke during carbonization, resulting in the formation of an abundant pseudographite structure with larger carbon interlayer spacing and micropores. The optimized semicoke-based hard carbon shows both a high initial Coulombic efficiency of 81% and a specific capacity of 307 mAh g<sup>−1</sup>, with low-voltage plateau capacity increased to 2.5 times, compared to that of the unmodified semicoke carbon. By the combination of detailed discharge curves and in situ X-ray diffraction analysis, the plateau capacity of semicoke-based hard carbon is mainly derived from interlayer intercalation of Na<sup>+</sup> ion. The proposed oxidation-crosslinking strategy can contribute to the usage of low-cost and high-performance hard carbons in advanced SIBs.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"177 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the electrochemical performance of semicoke-based hard carbon anode through oxidation-crosslinking strategy for low-cost sodium-ion batteries\",\"authors\":\"Huizhen Ma, Yakun Tang, Bin Tang, Yue Zhang, Limin Deng, Lang Liu, Sen Dong, Yuliang Cao\",\"doi\":\"10.1002/cey2.584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semicoke, a coal pyrolysis product, is a cost-effective and high-yield precursor for hard carbon used as anode in sodium-ion batteries (SIBs). However, as a thermoplastic precursor, semicoke inevitably graphitizes during high-temperature carbonization, so it is not easy to form the hard carbon structure. Herein, we propose an oxidation-crosslinking strategy to realize fusion-to-solid-state pyrolysis of semicoke. The semicoke is first preoxidized using a modified alkali-oxygen oxidation method to enrich its surface with carboxyl groups, which are localization points and the cross-linking reactions occur with citric acid to build the semicoke precursor with homogeneous and abundant -C-(O)–O- groups (up to 21 at% oxygen content). The -C-(O)–O- groups effectively prevent the rearrangement of carbon microcrystals in semicoke during carbonization, resulting in the formation of an abundant pseudographite structure with larger carbon interlayer spacing and micropores. The optimized semicoke-based hard carbon shows both a high initial Coulombic efficiency of 81% and a specific capacity of 307 mAh g<sup>−1</sup>, with low-voltage plateau capacity increased to 2.5 times, compared to that of the unmodified semicoke carbon. By the combination of detailed discharge curves and in situ X-ray diffraction analysis, the plateau capacity of semicoke-based hard carbon is mainly derived from interlayer intercalation of Na<sup>+</sup> ion. The proposed oxidation-crosslinking strategy can contribute to the usage of low-cost and high-performance hard carbons in advanced SIBs.\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cey2.584\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.584","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Semicoke 是一种煤热解产物,是钠离子电池(SIB)中用作负极的硬质碳的一种低成本、高产出的前驱体。然而,作为一种热塑性前驱体,半焦在高温碳化过程中不可避免地会发生石墨化,因此不易形成硬碳结构。在此,我们提出了一种氧化-交联策略,以实现半焦的熔融-固态热解。首先使用改良的碱氧氧化法对半焦进行预氧化,使其表面富含作为定位点的羧基,然后与柠檬酸发生交联反应,形成具有均匀而丰富的 -C-(O)-O- 基团(氧含量高达 21%)的半焦前驱体。在碳化过程中,-C-(O)-O-基团可有效阻止半焦中碳微晶的重新排列,从而形成具有较大碳层间距和微孔的丰富假象石结构。优化后的半焦基硬质碳的初始库仑效率高达 81%,比容量为 307 mAh g-1,与未改性的半焦碳相比,低电压高原容量提高了 2.5 倍。结合详细的放电曲线和原位 X 射线衍射分析,半焦基硬质碳的高原容量主要来源于 Na+ 离子的层间插层。所提出的氧化-交联策略有助于在先进的 SIB 中使用低成本、高性能的硬质碳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the electrochemical performance of semicoke-based hard carbon anode through oxidation-crosslinking strategy for low-cost sodium-ion batteries
Semicoke, a coal pyrolysis product, is a cost-effective and high-yield precursor for hard carbon used as anode in sodium-ion batteries (SIBs). However, as a thermoplastic precursor, semicoke inevitably graphitizes during high-temperature carbonization, so it is not easy to form the hard carbon structure. Herein, we propose an oxidation-crosslinking strategy to realize fusion-to-solid-state pyrolysis of semicoke. The semicoke is first preoxidized using a modified alkali-oxygen oxidation method to enrich its surface with carboxyl groups, which are localization points and the cross-linking reactions occur with citric acid to build the semicoke precursor with homogeneous and abundant -C-(O)–O- groups (up to 21 at% oxygen content). The -C-(O)–O- groups effectively prevent the rearrangement of carbon microcrystals in semicoke during carbonization, resulting in the formation of an abundant pseudographite structure with larger carbon interlayer spacing and micropores. The optimized semicoke-based hard carbon shows both a high initial Coulombic efficiency of 81% and a specific capacity of 307 mAh g−1, with low-voltage plateau capacity increased to 2.5 times, compared to that of the unmodified semicoke carbon. By the combination of detailed discharge curves and in situ X-ray diffraction analysis, the plateau capacity of semicoke-based hard carbon is mainly derived from interlayer intercalation of Na+ ion. The proposed oxidation-crosslinking strategy can contribute to the usage of low-cost and high-performance hard carbons in advanced SIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
期刊最新文献
Issue Information Cover Image, Volume 6, Number 10, October 2024 Back Cover Image, Volume 6, Number 10, October 2024 Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1