确定跨尺度能量转换材料:碱性氧进化反应

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Energy Pub Date : 2024-09-06 DOI:10.1002/cey2.608
Philipp Gerschel, Steven Angel, Mohaned Hammad, André Olean-Oliveira, Blaž Toplak, Vimanshu Chanda, Ricardo Martínez-Hincapié, Sebastian Sanden, Ali Raza Khan, Da Xing, Amin Said Amin, Hartmut Wiggers, Harry Hoster, Viktor Čolić, Corina Andronescu, Christof Schulz, Ulf-Peter Apfel, Doris Segets
{"title":"确定跨尺度能量转换材料:碱性氧进化反应","authors":"Philipp Gerschel, Steven Angel, Mohaned Hammad, André Olean-Oliveira, Blaž Toplak, Vimanshu Chanda, Ricardo Martínez-Hincapié, Sebastian Sanden, Ali Raza Khan, Da Xing, Amin Said Amin, Hartmut Wiggers, Harry Hoster, Viktor Čolić, Corina Andronescu, Christof Schulz, Ulf-Peter Apfel, Doris Segets","doi":"10.1002/cey2.608","DOIUrl":null,"url":null,"abstract":"Despite considerable efforts to develop electrolyzers for energy conversion, progress has been hindered during the implementation stage by different catalyst development requirements in academic and industrial research. Herein, a coherent workflow for the efficient transition of electrocatalysts from basic research to application readiness for the alkaline oxygen evolution reaction is proposed. To demonstrate this research approach, La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> is selected as a catalyst, and its electrocatalytic performance is compared with that of the benchmark material NiFe<sub>2</sub>O<sub>4</sub>. The La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> catalyst with the desired dispersity is successfully synthesized by scalable spray-flame synthesis. Subsequently, inks are formulated using different binders (Nafion®, Naf; Sustainion®, Sus), and nickel substrates are spray coated, ensuring a homogeneous catalyst distribution. Extensive electrochemical evaluations, including several scale-bridging techniques, highlight the efficiency of the La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> catalyst. Experiments using the scanning droplet cell (SDC) indicate good lateral homogeneity for La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> electrodes and NiFe<sub>2</sub>O<sub>4</sub>-Sus, while the NiFe<sub>2</sub>O<sub>4</sub>-Naf film suffers from delamination. Among the various half-cell techniques, SDC proves to be a valuable tool to quickly check whether a catalyst layer is suitable for full-cell-level testing and will be used for the fast-tracking of catalysts in the future. Complementary compression and flow cell experiments provide valuable information on the electrodes' behavior upon exposure to chemical and mechanical stress. Finally, parameters and conditions simulating industrial settings are applied using a zero-gap cell. Findings from various research fields across different scales obtained based on the developed coherent workflow contribute to a better understanding of the electrocatalytic system at the early stages of development and provide important insights for the evaluation of novel materials that are to be used in large-scale industrial applications.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"84 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining materials for energy conversion across scales: The alkaline oxygen evolution reaction\",\"authors\":\"Philipp Gerschel, Steven Angel, Mohaned Hammad, André Olean-Oliveira, Blaž Toplak, Vimanshu Chanda, Ricardo Martínez-Hincapié, Sebastian Sanden, Ali Raza Khan, Da Xing, Amin Said Amin, Hartmut Wiggers, Harry Hoster, Viktor Čolić, Corina Andronescu, Christof Schulz, Ulf-Peter Apfel, Doris Segets\",\"doi\":\"10.1002/cey2.608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite considerable efforts to develop electrolyzers for energy conversion, progress has been hindered during the implementation stage by different catalyst development requirements in academic and industrial research. Herein, a coherent workflow for the efficient transition of electrocatalysts from basic research to application readiness for the alkaline oxygen evolution reaction is proposed. To demonstrate this research approach, La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> is selected as a catalyst, and its electrocatalytic performance is compared with that of the benchmark material NiFe<sub>2</sub>O<sub>4</sub>. The La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> catalyst with the desired dispersity is successfully synthesized by scalable spray-flame synthesis. Subsequently, inks are formulated using different binders (Nafion®, Naf; Sustainion®, Sus), and nickel substrates are spray coated, ensuring a homogeneous catalyst distribution. Extensive electrochemical evaluations, including several scale-bridging techniques, highlight the efficiency of the La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> catalyst. Experiments using the scanning droplet cell (SDC) indicate good lateral homogeneity for La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> electrodes and NiFe<sub>2</sub>O<sub>4</sub>-Sus, while the NiFe<sub>2</sub>O<sub>4</sub>-Naf film suffers from delamination. Among the various half-cell techniques, SDC proves to be a valuable tool to quickly check whether a catalyst layer is suitable for full-cell-level testing and will be used for the fast-tracking of catalysts in the future. Complementary compression and flow cell experiments provide valuable information on the electrodes' behavior upon exposure to chemical and mechanical stress. Finally, parameters and conditions simulating industrial settings are applied using a zero-gap cell. Findings from various research fields across different scales obtained based on the developed coherent workflow contribute to a better understanding of the electrocatalytic system at the early stages of development and provide important insights for the evaluation of novel materials that are to be used in large-scale industrial applications.\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cey2.608\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.608","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管在开发用于能源转换的电解槽方面做出了巨大努力,但在实施阶段,学术研究和工业研究对催化剂开发的不同要求阻碍了进展。在此,我们提出了一个连贯的工作流程,以实现碱性氧进化反应电催化剂从基础研究到应用准备的高效过渡。为了展示这种研究方法,我们选择了 La0.8Sr0.2CoO3 作为催化剂,并将其电催化性能与基准材料 NiFe2O4 进行了比较。通过可扩展的喷雾火焰合成法成功合成了具有理想分散性的 La0.8Sr0.2CoO3 催化剂。随后,使用不同的粘合剂(Nafion®,Naf;Sustainion®,Sus)配制油墨,并对镍基底进行喷涂,以确保催化剂的均匀分布。广泛的电化学评估,包括几种尺度桥接技术,凸显了 La0.8Sr0.2CoO3 催化剂的效率。使用扫描液滴池(SDC)进行的实验表明,La0.8Sr0.2CoO3 电极和 NiFe2O4-Sus 具有良好的横向均匀性,而 NiFe2O4-Naf 薄膜则存在分层现象。在各种半电池技术中,SDC 被证明是快速检查催化剂层是否适合全电池测试的重要工具,并将在未来用于催化剂的快速跟踪。压缩和流动池实验为电极暴露于化学和机械应力时的行为提供了有价值的信息。最后,使用零间隙电池模拟了工业环境的参数和条件。根据所开发的连贯工作流程从不同研究领域获得的不同规模的研究结果,有助于更好地了解处于开发早期阶段的电催化系统,并为评估将用于大规模工业应用的新型材料提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determining materials for energy conversion across scales: The alkaline oxygen evolution reaction
Despite considerable efforts to develop electrolyzers for energy conversion, progress has been hindered during the implementation stage by different catalyst development requirements in academic and industrial research. Herein, a coherent workflow for the efficient transition of electrocatalysts from basic research to application readiness for the alkaline oxygen evolution reaction is proposed. To demonstrate this research approach, La0.8Sr0.2CoO3 is selected as a catalyst, and its electrocatalytic performance is compared with that of the benchmark material NiFe2O4. The La0.8Sr0.2CoO3 catalyst with the desired dispersity is successfully synthesized by scalable spray-flame synthesis. Subsequently, inks are formulated using different binders (Nafion®, Naf; Sustainion®, Sus), and nickel substrates are spray coated, ensuring a homogeneous catalyst distribution. Extensive electrochemical evaluations, including several scale-bridging techniques, highlight the efficiency of the La0.8Sr0.2CoO3 catalyst. Experiments using the scanning droplet cell (SDC) indicate good lateral homogeneity for La0.8Sr0.2CoO3 electrodes and NiFe2O4-Sus, while the NiFe2O4-Naf film suffers from delamination. Among the various half-cell techniques, SDC proves to be a valuable tool to quickly check whether a catalyst layer is suitable for full-cell-level testing and will be used for the fast-tracking of catalysts in the future. Complementary compression and flow cell experiments provide valuable information on the electrodes' behavior upon exposure to chemical and mechanical stress. Finally, parameters and conditions simulating industrial settings are applied using a zero-gap cell. Findings from various research fields across different scales obtained based on the developed coherent workflow contribute to a better understanding of the electrocatalytic system at the early stages of development and provide important insights for the evaluation of novel materials that are to be used in large-scale industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
期刊最新文献
Issue Information Cover Image, Volume 6, Number 10, October 2024 Back Cover Image, Volume 6, Number 10, October 2024 Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1