Hun Kim, Jae-Min Kim, Ha-Neul Choi, Kyeong-Jun Min, Shivam Kansara, Jang-Yeon Hwang, Jung Ho Kim, Hun-Gi Jung, Yang-Kook Sun
{"title":"改善高负载锂硫袋装电池的反应均匀性","authors":"Hun Kim, Jae-Min Kim, Ha-Neul Choi, Kyeong-Jun Min, Shivam Kansara, Jang-Yeon Hwang, Jung Ho Kim, Hun-Gi Jung, Yang-Kook Sun","doi":"10.1002/cey2.578","DOIUrl":null,"url":null,"abstract":"Lithium-sulfur batteries (LSBs) have garnered attention from both academia and industry because they can achieve high energy densities (>400 Wh kg<sup>–1</sup>), which are difficult to achieve in commercially available lithium-ion batteries. As a preparation step for practically utilizing LSBs, there is a problem, wherein battery cycle life rapidly reduces as the loading level of the sulfur cathode increases and the electrode area expands. In this study, a separator coated with boehmite on both sides of polyethylene (hereinafter denoted as boehmite separator) is incorporated into a high-loading Li-S pouch battery to suppress sudden capacity drops and achieve a longer cycle life. We explore a phenomenon by which inequality is generated in regions where an electrochemical reaction occurs in the sulfur cathode during the discharging and charging of a high-capacity Li-S pouch battery. The boehmite separator inhibits the accumulation of sulfur-related species on the surface of the sulfur cathode to induce an even reaction across the entire cathode and suppresses the degradation of the Li metal anode, allowing the pouch battery with an areal capacity of 8 mAh cm<sup>–2</sup> to operate stably for 300 cycles. These results demonstrate the importance of customizing separators for the practical use of LSBs.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"29 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving reaction uniformity of high-loading lithium-sulfur pouch batteries\",\"authors\":\"Hun Kim, Jae-Min Kim, Ha-Neul Choi, Kyeong-Jun Min, Shivam Kansara, Jang-Yeon Hwang, Jung Ho Kim, Hun-Gi Jung, Yang-Kook Sun\",\"doi\":\"10.1002/cey2.578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-sulfur batteries (LSBs) have garnered attention from both academia and industry because they can achieve high energy densities (>400 Wh kg<sup>–1</sup>), which are difficult to achieve in commercially available lithium-ion batteries. As a preparation step for practically utilizing LSBs, there is a problem, wherein battery cycle life rapidly reduces as the loading level of the sulfur cathode increases and the electrode area expands. In this study, a separator coated with boehmite on both sides of polyethylene (hereinafter denoted as boehmite separator) is incorporated into a high-loading Li-S pouch battery to suppress sudden capacity drops and achieve a longer cycle life. We explore a phenomenon by which inequality is generated in regions where an electrochemical reaction occurs in the sulfur cathode during the discharging and charging of a high-capacity Li-S pouch battery. The boehmite separator inhibits the accumulation of sulfur-related species on the surface of the sulfur cathode to induce an even reaction across the entire cathode and suppresses the degradation of the Li metal anode, allowing the pouch battery with an areal capacity of 8 mAh cm<sup>–2</sup> to operate stably for 300 cycles. These results demonstrate the importance of customizing separators for the practical use of LSBs.\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cey2.578\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.578","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Improving reaction uniformity of high-loading lithium-sulfur pouch batteries
Lithium-sulfur batteries (LSBs) have garnered attention from both academia and industry because they can achieve high energy densities (>400 Wh kg–1), which are difficult to achieve in commercially available lithium-ion batteries. As a preparation step for practically utilizing LSBs, there is a problem, wherein battery cycle life rapidly reduces as the loading level of the sulfur cathode increases and the electrode area expands. In this study, a separator coated with boehmite on both sides of polyethylene (hereinafter denoted as boehmite separator) is incorporated into a high-loading Li-S pouch battery to suppress sudden capacity drops and achieve a longer cycle life. We explore a phenomenon by which inequality is generated in regions where an electrochemical reaction occurs in the sulfur cathode during the discharging and charging of a high-capacity Li-S pouch battery. The boehmite separator inhibits the accumulation of sulfur-related species on the surface of the sulfur cathode to induce an even reaction across the entire cathode and suppresses the degradation of the Li metal anode, allowing the pouch battery with an areal capacity of 8 mAh cm–2 to operate stably for 300 cycles. These results demonstrate the importance of customizing separators for the practical use of LSBs.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.