利用可解释图神经网络对 fMRI、DTI 和 sMRI 进行大脑连接性综合分析

Gang Qu, Ziyu Zhou, Vince D. Calhoun, Aiying Zhang, Yu-Ping Wang
{"title":"利用可解释图神经网络对 fMRI、DTI 和 sMRI 进行大脑连接性综合分析","authors":"Gang Qu, Ziyu Zhou, Vince D. Calhoun, Aiying Zhang, Yu-Ping Wang","doi":"arxiv-2408.14254","DOIUrl":null,"url":null,"abstract":"Multimodal neuroimaging modeling has becomes a widely used approach but\nconfronts considerable challenges due to heterogeneity, which encompasses\nvariability in data types, scales, and formats across modalities. This\nvariability necessitates the deployment of advanced computational methods to\nintegrate and interpret these diverse datasets within a cohesive analytical\nframework. In our research, we amalgamate functional magnetic resonance\nimaging, diffusion tensor imaging, and structural MRI into a cohesive\nframework. This integration capitalizes on the unique strengths of each\nmodality and their inherent interconnections, aiming for a comprehensive\nunderstanding of the brain's connectivity and anatomical characteristics.\nUtilizing the Glasser atlas for parcellation, we integrate imaging derived\nfeatures from various modalities: functional connectivity from fMRI, structural\nconnectivity from DTI, and anatomical features from sMRI within consistent\nregions. Our approach incorporates a masking strategy to differentially weight\nneural connections, thereby facilitating a holistic amalgamation of multimodal\nimaging data. This technique enhances interpretability at connectivity level,\ntranscending traditional analyses centered on singular regional attributes. The\nmodel is applied to the Human Connectome Project's Development study to\nelucidate the associations between multimodal imaging and cognitive functions\nthroughout youth. The analysis demonstrates improved predictive accuracy and\nuncovers crucial anatomical features and essential neural connections,\ndeepening our understanding of brain structure and function.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Brain Connectivity Analysis with fMRI, DTI, and sMRI Powered by Interpretable Graph Neural Networks\",\"authors\":\"Gang Qu, Ziyu Zhou, Vince D. Calhoun, Aiying Zhang, Yu-Ping Wang\",\"doi\":\"arxiv-2408.14254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal neuroimaging modeling has becomes a widely used approach but\\nconfronts considerable challenges due to heterogeneity, which encompasses\\nvariability in data types, scales, and formats across modalities. This\\nvariability necessitates the deployment of advanced computational methods to\\nintegrate and interpret these diverse datasets within a cohesive analytical\\nframework. In our research, we amalgamate functional magnetic resonance\\nimaging, diffusion tensor imaging, and structural MRI into a cohesive\\nframework. This integration capitalizes on the unique strengths of each\\nmodality and their inherent interconnections, aiming for a comprehensive\\nunderstanding of the brain's connectivity and anatomical characteristics.\\nUtilizing the Glasser atlas for parcellation, we integrate imaging derived\\nfeatures from various modalities: functional connectivity from fMRI, structural\\nconnectivity from DTI, and anatomical features from sMRI within consistent\\nregions. Our approach incorporates a masking strategy to differentially weight\\nneural connections, thereby facilitating a holistic amalgamation of multimodal\\nimaging data. This technique enhances interpretability at connectivity level,\\ntranscending traditional analyses centered on singular regional attributes. The\\nmodel is applied to the Human Connectome Project's Development study to\\nelucidate the associations between multimodal imaging and cognitive functions\\nthroughout youth. The analysis demonstrates improved predictive accuracy and\\nuncovers crucial anatomical features and essential neural connections,\\ndeepening our understanding of brain structure and function.\",\"PeriodicalId\":501517,\"journal\":{\"name\":\"arXiv - QuanBio - Neurons and Cognition\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多模态神经成像建模已成为一种广泛应用的方法,但由于异质性,包括不同模态的数据类型、规模和格式的差异性,面临着相当大的挑战。这种多变性要求部署先进的计算方法,以便在一个有凝聚力的分析框架内整合和解释这些不同的数据集。在我们的研究中,我们将功能磁共振成像、弥散张量成像和结构磁共振成像整合到一个具有凝聚力的框架中。这种整合利用了每种模式的独特优势及其固有的相互联系,旨在全面了解大脑的连接性和解剖学特征。利用 Glasser 图集进行解析,我们整合了来自各种模式的成像衍生特征:来自 fMRI 的功能连接性、来自 DTI 的结构连接性和来自 sMRI 的一致区域内的解剖学特征。我们的方法采用掩蔽策略对神经连接进行不同加权,从而促进多模态成像数据的整体融合。这项技术增强了连接层面的可解释性,超越了以单一区域属性为中心的传统分析。该模型被应用于人类连接组计划的发展研究,以阐明多模态成像与青少年认知功能之间的关联。该分析提高了预测的准确性,发现了关键的解剖特征和重要的神经连接,加深了我们对大脑结构和功能的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Brain Connectivity Analysis with fMRI, DTI, and sMRI Powered by Interpretable Graph Neural Networks
Multimodal neuroimaging modeling has becomes a widely used approach but confronts considerable challenges due to heterogeneity, which encompasses variability in data types, scales, and formats across modalities. This variability necessitates the deployment of advanced computational methods to integrate and interpret these diverse datasets within a cohesive analytical framework. In our research, we amalgamate functional magnetic resonance imaging, diffusion tensor imaging, and structural MRI into a cohesive framework. This integration capitalizes on the unique strengths of each modality and their inherent interconnections, aiming for a comprehensive understanding of the brain's connectivity and anatomical characteristics. Utilizing the Glasser atlas for parcellation, we integrate imaging derived features from various modalities: functional connectivity from fMRI, structural connectivity from DTI, and anatomical features from sMRI within consistent regions. Our approach incorporates a masking strategy to differentially weight neural connections, thereby facilitating a holistic amalgamation of multimodal imaging data. This technique enhances interpretability at connectivity level, transcending traditional analyses centered on singular regional attributes. The model is applied to the Human Connectome Project's Development study to elucidate the associations between multimodal imaging and cognitive functions throughout youth. The analysis demonstrates improved predictive accuracy and uncovers crucial anatomical features and essential neural connections, deepening our understanding of brain structure and function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification Identifying Influential nodes in Brain Networks via Self-Supervised Graph-Transformer Contrastive Learning in Memristor-based Neuromorphic Systems Self-Attention Limits Working Memory Capacity of Transformer-Based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1