大脑及其他领域的拓扑表征相似性分析

Baihan Lin
{"title":"大脑及其他领域的拓扑表征相似性分析","authors":"Baihan Lin","doi":"arxiv-2408.11948","DOIUrl":null,"url":null,"abstract":"Understanding how the brain represents and processes information is crucial\nfor advancing neuroscience and artificial intelligence. Representational\nsimilarity analysis (RSA) has been instrumental in characterizing neural\nrepresentations, but traditional RSA relies solely on geometric properties,\noverlooking crucial topological information. This thesis introduces Topological\nRSA (tRSA), a novel framework combining geometric and topological properties of\nneural representations. tRSA applies nonlinear monotonic transforms to representational\ndissimilarities, emphasizing local topology while retaining intermediate-scale\ngeometry. The resulting geo-topological matrices enable model comparisons\nrobust to noise and individual idiosyncrasies. This thesis introduces several\nkey methodological advances: (1) Topological RSA (tRSA) for identifying\ncomputational signatures and testing topological hypotheses; (2) Adaptive\nGeo-Topological Dependence Measure (AGTDM) for detecting complex multivariate\nrelationships; (3) Procrustes-aligned Multidimensional Scaling (pMDS) for\nrevealing neural computation stages; (4) Temporal Topological Data Analysis\n(tTDA) for uncovering developmental trajectories; and (5) Single-cell\nTopological Simplicial Analysis (scTSA) for characterizing cell population\ncomplexity. Through analyses of neural recordings, biological data, and neural network\nsimulations, this thesis demonstrates the power and versatility of these\nmethods in understanding brains, computational models, and complex biological\nsystems. They not only offer robust approaches for adjudicating among competing\nmodels but also reveal novel theoretical insights into the nature of neural\ncomputation. This work lays the foundation for future investigations at the\nintersection of topology, neuroscience, and time series analysis, paving the\nway for more nuanced understanding of brain function and dysfunction.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Representational Similarity Analysis in Brains and Beyond\",\"authors\":\"Baihan Lin\",\"doi\":\"arxiv-2408.11948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding how the brain represents and processes information is crucial\\nfor advancing neuroscience and artificial intelligence. Representational\\nsimilarity analysis (RSA) has been instrumental in characterizing neural\\nrepresentations, but traditional RSA relies solely on geometric properties,\\noverlooking crucial topological information. This thesis introduces Topological\\nRSA (tRSA), a novel framework combining geometric and topological properties of\\nneural representations. tRSA applies nonlinear monotonic transforms to representational\\ndissimilarities, emphasizing local topology while retaining intermediate-scale\\ngeometry. The resulting geo-topological matrices enable model comparisons\\nrobust to noise and individual idiosyncrasies. This thesis introduces several\\nkey methodological advances: (1) Topological RSA (tRSA) for identifying\\ncomputational signatures and testing topological hypotheses; (2) Adaptive\\nGeo-Topological Dependence Measure (AGTDM) for detecting complex multivariate\\nrelationships; (3) Procrustes-aligned Multidimensional Scaling (pMDS) for\\nrevealing neural computation stages; (4) Temporal Topological Data Analysis\\n(tTDA) for uncovering developmental trajectories; and (5) Single-cell\\nTopological Simplicial Analysis (scTSA) for characterizing cell population\\ncomplexity. Through analyses of neural recordings, biological data, and neural network\\nsimulations, this thesis demonstrates the power and versatility of these\\nmethods in understanding brains, computational models, and complex biological\\nsystems. They not only offer robust approaches for adjudicating among competing\\nmodels but also reveal novel theoretical insights into the nature of neural\\ncomputation. This work lays the foundation for future investigations at the\\nintersection of topology, neuroscience, and time series analysis, paving the\\nway for more nuanced understanding of brain function and dysfunction.\",\"PeriodicalId\":501517,\"journal\":{\"name\":\"arXiv - QuanBio - Neurons and Cognition\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解大脑如何表示和处理信息对于推动神经科学和人工智能的发展至关重要。表征相似性分析(RSA)在描述神经表征方面发挥了重要作用,但传统的 RSA 仅依赖于几何特性,忽略了重要的拓扑信息。本论文介绍了拓扑 RSA(tRSA),这是一种结合了神经表征的几何和拓扑特性的新型框架。tRSA 将非线性单调变换应用于表征不相似性,在强调局部拓扑的同时保留了中间尺度的几何特性。由此产生的地缘拓扑矩阵可使模型比较不受噪声和个体特异性的影响。本论文介绍了几项重要的方法论进展:(1) 拓扑 RSA (tRSA),用于识别计算特征和测试拓扑假设;(2) 自适应地理-拓扑相关性测量 (AGTDM) ,用于检测复杂的多变量关系;(3) Procrustes-aligned Multidimensional Scaling (pMDS) 用于揭示神经计算阶段;(4) Temporal Topological Data Analysis (tTDA) 用于揭示发育轨迹;以及 (5) Single-cellTopological Simplicial Analysis (scTSA) 用于描述细胞群复杂性。通过对神经记录、生物数据和神经网络模拟的分析,本论文展示了这些方法在理解大脑、计算模型和复杂生物系统方面的强大功能和多功能性。它们不仅提供了在相互竞争的模型之间进行裁决的稳健方法,还揭示了神经计算本质的新理论见解。这项工作为拓扑学、神经科学和时间序列分析的未来研究奠定了基础,为更细致地理解大脑功能和功能障碍铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topological Representational Similarity Analysis in Brains and Beyond
Understanding how the brain represents and processes information is crucial for advancing neuroscience and artificial intelligence. Representational similarity analysis (RSA) has been instrumental in characterizing neural representations, but traditional RSA relies solely on geometric properties, overlooking crucial topological information. This thesis introduces Topological RSA (tRSA), a novel framework combining geometric and topological properties of neural representations. tRSA applies nonlinear monotonic transforms to representational dissimilarities, emphasizing local topology while retaining intermediate-scale geometry. The resulting geo-topological matrices enable model comparisons robust to noise and individual idiosyncrasies. This thesis introduces several key methodological advances: (1) Topological RSA (tRSA) for identifying computational signatures and testing topological hypotheses; (2) Adaptive Geo-Topological Dependence Measure (AGTDM) for detecting complex multivariate relationships; (3) Procrustes-aligned Multidimensional Scaling (pMDS) for revealing neural computation stages; (4) Temporal Topological Data Analysis (tTDA) for uncovering developmental trajectories; and (5) Single-cell Topological Simplicial Analysis (scTSA) for characterizing cell population complexity. Through analyses of neural recordings, biological data, and neural network simulations, this thesis demonstrates the power and versatility of these methods in understanding brains, computational models, and complex biological systems. They not only offer robust approaches for adjudicating among competing models but also reveal novel theoretical insights into the nature of neural computation. This work lays the foundation for future investigations at the intersection of topology, neuroscience, and time series analysis, paving the way for more nuanced understanding of brain function and dysfunction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification Identifying Influential nodes in Brain Networks via Self-Supervised Graph-Transformer Contrastive Learning in Memristor-based Neuromorphic Systems Self-Attention Limits Working Memory Capacity of Transformer-Based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1