正均值高斯矩阵的最大特征值

Arijit Chakrabarty, Rajat Subhra Hazra, Moumanti Podder
{"title":"正均值高斯矩阵的最大特征值","authors":"Arijit Chakrabarty, Rajat Subhra Hazra, Moumanti Podder","doi":"arxiv-2409.05858","DOIUrl":null,"url":null,"abstract":"This short note studies the fluctuations of the largest eigenvalue of\nsymmetric random matrices with correlated Gaussian entries having positive\nmean. Under the assumption that the covariance kernel is absolutely summable,\nit is proved that the largest eigenvalue, after centering, converges in\ndistribution to normal with an explicitly defined mean and variance. This\nresult generalizes known findings for Wigner matrices with independent entries.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Largest eigenvalue of positive mean Gaussian matrices\",\"authors\":\"Arijit Chakrabarty, Rajat Subhra Hazra, Moumanti Podder\",\"doi\":\"arxiv-2409.05858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This short note studies the fluctuations of the largest eigenvalue of\\nsymmetric random matrices with correlated Gaussian entries having positive\\nmean. Under the assumption that the covariance kernel is absolutely summable,\\nit is proved that the largest eigenvalue, after centering, converges in\\ndistribution to normal with an explicitly defined mean and variance. This\\nresult generalizes known findings for Wigner matrices with independent entries.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇短文研究了具有正均值相关高斯条目的对称随机矩阵的最大特征值的波动。在假设协方差核是绝对可求和的情况下,证明了最大特征值在居中后,收敛于具有明确定义的均值和方差的正态分布。这一结果概括了对具有独立条目的维格纳矩阵的已知发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Largest eigenvalue of positive mean Gaussian matrices
This short note studies the fluctuations of the largest eigenvalue of symmetric random matrices with correlated Gaussian entries having positive mean. Under the assumption that the covariance kernel is absolutely summable, it is proved that the largest eigenvalue, after centering, converges in distribution to normal with an explicitly defined mean and variance. This result generalizes known findings for Wigner matrices with independent entries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Total disconnectedness and percolation for the supports of super-tree random measures The largest fragment in self-similar fragmentation processes of positive index Local limit of the random degree constrained process The Moran process on a random graph Abelian and stochastic sandpile models on complete bipartite graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1