新型低损耗 0.65-THz 多剖面折叠波导高频电路

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-09-10 DOI:10.1109/TED.2024.3452703
Jingyu Guo;Yang Dong;Yuan Zheng;Duo Xu;Jingrui Duan;Yuxin Wang;Ping Zhang;Zhanliang Wang;Zhigang Lu;Shaomeng Wang;Yubin Gong
{"title":"新型低损耗 0.65-THz 多剖面折叠波导高频电路","authors":"Jingyu Guo;Yang Dong;Yuan Zheng;Duo Xu;Jingrui Duan;Yuxin Wang;Ping Zhang;Zhanliang Wang;Zhigang Lu;Shaomeng Wang;Yubin Gong","doi":"10.1109/TED.2024.3452703","DOIUrl":null,"url":null,"abstract":"A low-loss and high-effective-output-power terahertz (THz) folded waveguide (FWG) high-frequency circuit is proposed, fabricated, and tested. The circuit consists of several slow wave sections connected by a single period transition structure, in which the odd number sections are with the same slow wave unit cells and the even ones are with another same slow wave unit cells. To increase fabrication accuracy and reduce the circuit losses, both slow wave unit cells are designed to operate with phase shifts greater than 600°. The circuit, fabricated from oxygen-free copper (OFC) by using nano computer numerical control (nano-CNC) milling technology, exhibits excellent transmission characteristics in the cold test experiment, achieving a transmission loss of less than 1 dB/mm, corresponding a recorded equivalent conductivity of \n<inline-formula> <tex-math>$3.7\\times 10^{{7}}$ </tex-math></inline-formula>\n S/m above 0.6 THz. The simulations with modified structural dimensions based on the fabricated sample indicate that the machining errors are below \n<inline-formula> <tex-math>$2\\mu $ </tex-math></inline-formula>\nm, resulting in the frequency shift within 12 GHz. In addition, the low loss enables the saturated input power to be as low as 0.5 mW, while the maximum output power reaches 2.86 W with a 3-dB bandwidth of approximately 8 GHz.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Low-Loss 0.65-THz Multisectional Folded Waveguide High-Frequency Circuit\",\"authors\":\"Jingyu Guo;Yang Dong;Yuan Zheng;Duo Xu;Jingrui Duan;Yuxin Wang;Ping Zhang;Zhanliang Wang;Zhigang Lu;Shaomeng Wang;Yubin Gong\",\"doi\":\"10.1109/TED.2024.3452703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-loss and high-effective-output-power terahertz (THz) folded waveguide (FWG) high-frequency circuit is proposed, fabricated, and tested. The circuit consists of several slow wave sections connected by a single period transition structure, in which the odd number sections are with the same slow wave unit cells and the even ones are with another same slow wave unit cells. To increase fabrication accuracy and reduce the circuit losses, both slow wave unit cells are designed to operate with phase shifts greater than 600°. The circuit, fabricated from oxygen-free copper (OFC) by using nano computer numerical control (nano-CNC) milling technology, exhibits excellent transmission characteristics in the cold test experiment, achieving a transmission loss of less than 1 dB/mm, corresponding a recorded equivalent conductivity of \\n<inline-formula> <tex-math>$3.7\\\\times 10^{{7}}$ </tex-math></inline-formula>\\n S/m above 0.6 THz. The simulations with modified structural dimensions based on the fabricated sample indicate that the machining errors are below \\n<inline-formula> <tex-math>$2\\\\mu $ </tex-math></inline-formula>\\nm, resulting in the frequency shift within 12 GHz. In addition, the low loss enables the saturated input power to be as low as 0.5 mW, while the maximum output power reaches 2.86 W with a 3-dB bandwidth of approximately 8 GHz.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10670312/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10670312/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种低损耗、高有效输出功率的太赫兹(THz)折叠波导(FWG)高频电路,并对其进行了制作和测试。该电路由多个慢波部分组成,通过单周期过渡结构连接,其中奇数部分使用相同的慢波单元,偶数部分使用另一个相同的慢波单元。为了提高制造精度和减少电路损耗,两个慢波单元都设计成相移大于 600°。该电路由无氧铜(OFC)通过纳米计算机数控(nano-CNC)铣削技术制成,在冷测试实验中表现出优异的传输特性,传输损耗小于 1 dB/mm,在 0.6 THz 以上记录的等效电导率为 3.7/times 10^{{7}}$ S/m。根据制作的样品修改结构尺寸后进行的模拟表明,加工误差低于 2 美元/毫米,因此频率偏移在 12 千兆赫以内。此外,低损耗使饱和输入功率低至 0.5 mW,而最大输出功率达到 2.86 W,3-dB 带宽约为 8 GHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Low-Loss 0.65-THz Multisectional Folded Waveguide High-Frequency Circuit
A low-loss and high-effective-output-power terahertz (THz) folded waveguide (FWG) high-frequency circuit is proposed, fabricated, and tested. The circuit consists of several slow wave sections connected by a single period transition structure, in which the odd number sections are with the same slow wave unit cells and the even ones are with another same slow wave unit cells. To increase fabrication accuracy and reduce the circuit losses, both slow wave unit cells are designed to operate with phase shifts greater than 600°. The circuit, fabricated from oxygen-free copper (OFC) by using nano computer numerical control (nano-CNC) milling technology, exhibits excellent transmission characteristics in the cold test experiment, achieving a transmission loss of less than 1 dB/mm, corresponding a recorded equivalent conductivity of $3.7\times 10^{{7}}$ S/m above 0.6 THz. The simulations with modified structural dimensions based on the fabricated sample indicate that the machining errors are below $2\mu $ m, resulting in the frequency shift within 12 GHz. In addition, the low loss enables the saturated input power to be as low as 0.5 mW, while the maximum output power reaches 2.86 W with a 3-dB bandwidth of approximately 8 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices Corrections to “Electron Emission Regimes of Planar Nano Vacuum Emitters” IEEE Open Access Publishing IEEE ELECTRON DEVICES SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1