{"title":"高迁移率 p 型碲场效应晶体管的电流波动机制","authors":"Peng Yang;Yudong Pang;Jiajia Zha;Haoxin Huang;Zhendong Jiang;Meng Zhang;Chaoliang Tan;Wugang Liao","doi":"10.1109/TED.2024.3440962","DOIUrl":null,"url":null,"abstract":"This article utilizes low-frequency noise (LFN) measurements to evaluate the stability of tellurium (Te) field-effect transistor (FET). Our results show that LFN for Te FET on hexagonal boron nitride/silicon dioxide (h-BN/SiO\n<sub>2</sub>\n) tracks the trends of flicker noise (1/\n<italic>f</i>\n noise) and decreases with increasing overdrive voltages, which is ascribed to the change of dominant carriers and the fluctuation of surface trap density. Compared with Te FET on SiO\n<sub>2</sub>\n, Te FET on h-BN/SiO\n<sub>2</sub>\n reaches a lower LFN. To further investigate the mechanism of current fluctuation, surface trap density (\n<inline-formula> <tex-math>${N} _{\\text {st}}$ </tex-math></inline-formula>\n) is extracted. The average value of \n<inline-formula> <tex-math>${N} _{\\text {st}}$ </tex-math></inline-formula>\n for Te FETs on h-BN/SiO\n<sub>2</sub>\n is smaller than that for Te FETs on SiO\n<sub>2</sub>\n. It is concluded that the introduction of atomically flat h-BN dielectric decreases \n<inline-formula> <tex-math>${N} _{\\text {st}}$ </tex-math></inline-formula>\n, suggesting that Te FET on h-BN/SiO\n<sub>2</sub>\n presents higher immunity to LFN and provides a design thought for devices with high stability in the future.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of Current Fluctuation in High-Mobility p-Type Tellurium Field-Effect Transistors\",\"authors\":\"Peng Yang;Yudong Pang;Jiajia Zha;Haoxin Huang;Zhendong Jiang;Meng Zhang;Chaoliang Tan;Wugang Liao\",\"doi\":\"10.1109/TED.2024.3440962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article utilizes low-frequency noise (LFN) measurements to evaluate the stability of tellurium (Te) field-effect transistor (FET). Our results show that LFN for Te FET on hexagonal boron nitride/silicon dioxide (h-BN/SiO\\n<sub>2</sub>\\n) tracks the trends of flicker noise (1/\\n<italic>f</i>\\n noise) and decreases with increasing overdrive voltages, which is ascribed to the change of dominant carriers and the fluctuation of surface trap density. Compared with Te FET on SiO\\n<sub>2</sub>\\n, Te FET on h-BN/SiO\\n<sub>2</sub>\\n reaches a lower LFN. To further investigate the mechanism of current fluctuation, surface trap density (\\n<inline-formula> <tex-math>${N} _{\\\\text {st}}$ </tex-math></inline-formula>\\n) is extracted. The average value of \\n<inline-formula> <tex-math>${N} _{\\\\text {st}}$ </tex-math></inline-formula>\\n for Te FETs on h-BN/SiO\\n<sub>2</sub>\\n is smaller than that for Te FETs on SiO\\n<sub>2</sub>\\n. It is concluded that the introduction of atomically flat h-BN dielectric decreases \\n<inline-formula> <tex-math>${N} _{\\\\text {st}}$ </tex-math></inline-formula>\\n, suggesting that Te FET on h-BN/SiO\\n<sub>2</sub>\\n presents higher immunity to LFN and provides a design thought for devices with high stability in the future.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10665935/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10665935/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文利用低频噪声(LFN)测量来评估碲(Te)场效应晶体管(FET)的稳定性。结果表明,六方氮化硼/二氧化硅(h-BN/SiO2)上的碲场效应晶体管的低频噪声与闪烁噪声(1/f 噪声)的变化趋势一致,并随着过驱动电压的增加而减小,这归因于主导载流子的变化和表面陷阱密度的波动。与二氧化硅上的 Te FET 相比,h-BN/二氧化硅上的 Te FET 的低频闪烁噪声更低。为了进一步研究电流波动的机制,我们提取了表面陷阱密度(${N} _{text {st}}$)。${N} _{text {st}}$ 的平均值_{\text {st}}$的平均值小于SiO2上的Te场效应晶体管。结论是,引入原子平的 h-BN 介电会降低 ${N} _\{text {st}}$ 。_{text/{st}}$,这表明在 h-BN/SiO2 上的 Te FET 具有更高的抗 LFN 能力,为未来设计具有高稳定性的器件提供了思路。
Mechanisms of Current Fluctuation in High-Mobility p-Type Tellurium Field-Effect Transistors
This article utilizes low-frequency noise (LFN) measurements to evaluate the stability of tellurium (Te) field-effect transistor (FET). Our results show that LFN for Te FET on hexagonal boron nitride/silicon dioxide (h-BN/SiO
2
) tracks the trends of flicker noise (1/
f
noise) and decreases with increasing overdrive voltages, which is ascribed to the change of dominant carriers and the fluctuation of surface trap density. Compared with Te FET on SiO
2
, Te FET on h-BN/SiO
2
reaches a lower LFN. To further investigate the mechanism of current fluctuation, surface trap density (
${N} _{\text {st}}$
) is extracted. The average value of
${N} _{\text {st}}$
for Te FETs on h-BN/SiO
2
is smaller than that for Te FETs on SiO
2
. It is concluded that the introduction of atomically flat h-BN dielectric decreases
${N} _{\text {st}}$
, suggesting that Te FET on h-BN/SiO
2
presents higher immunity to LFN and provides a design thought for devices with high stability in the future.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.