供体不完全电离诱发的 $beta $-Ga$_{\text{2}}$O$_{\text{3}}$ MOSFET 中的电流扭结效应

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-08-23 DOI:10.1109/TED.2024.3440950
Xinxin Yu;Hehe Gong;Jianjun Zhou;Zhenghao Shen;Fangfang Ren;Dunjun Chen;Xin Ou;Shulin Gu;Yuechan Kong;Zhonghui Li;Tangsheng Chen;Rong Zhang;Youdou Zheng;Jiandong Ye
{"title":"供体不完全电离诱发的 $beta $-Ga$_{\\text{2}}$O$_{\\text{3}}$ MOSFET 中的电流扭结效应","authors":"Xinxin Yu;Hehe Gong;Jianjun Zhou;Zhenghao Shen;Fangfang Ren;Dunjun Chen;Xin Ou;Shulin Gu;Yuechan Kong;Zhonghui Li;Tangsheng Chen;Rong Zhang;Youdou Zheng;Jiandong Ye","doi":"10.1109/TED.2024.3440950","DOIUrl":null,"url":null,"abstract":"In this article, the origin of severe drain–source current kink effect in \n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-Ga\n<sub>2</sub>\nO\n<sub>3</sub>\n MOSFETs has been exploited by means of temperature- and pulse-dependent current–voltage (\n<italic>I</i>\n–\n<italic>V</i>\n) analysis. By reducing the pulse biasing widths, whereby the self-heating effect was negligible, the output characteristics were free of kink but with a rather low drain–source current density (\n<inline-formula> <tex-math>${I}_{\\text {DS}}$ </tex-math></inline-formula>\n) at a high drain voltage (\n<inline-formula> <tex-math>${V}_{\\text {DS}}$ </tex-math></inline-formula>\n) of 30 V. The current kink effect started to occur with a direct-current power consumption of approximately 850 mW/mm. The elimination of kink features was also observed together with a large \n<inline-formula> <tex-math>${I}_{\\text {DS}}$ </tex-math></inline-formula>\n at elevated temperatures over 100 °C. These observations indicate that the kink effect is strongly related to thermal activation of incomplete ionized donors by either the self-heating effect or external intentional heating stress rather than high electric field. In terms of temperature-dependent current output characteristics, the thermal activation energy is determined to be 136 meV, which is consistent with the reported unintentional donors with a high activation energy of 110 meV. It implies that additional electrons are thermally activated and emitted from the incomplete ionized donors in \n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-Ga\n<sub>2</sub>\nO\n<sub>3</sub>\n channel or buffer layers through the self-heating effect, contributing to the channel conductivity modulation and the consequent current kink effect. These findings may bridge the knowledge gap between charge transport mechanisms and the reliability degradation of \n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-Ga\n<sub>2</sub>\nO\n<sub>3</sub>\n power switches.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current Kink Effect in β-Ga₂O₃ MOSFETs Induced by Incomplete Ionization of Donors\",\"authors\":\"Xinxin Yu;Hehe Gong;Jianjun Zhou;Zhenghao Shen;Fangfang Ren;Dunjun Chen;Xin Ou;Shulin Gu;Yuechan Kong;Zhonghui Li;Tangsheng Chen;Rong Zhang;Youdou Zheng;Jiandong Ye\",\"doi\":\"10.1109/TED.2024.3440950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the origin of severe drain–source current kink effect in \\n<inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>\\n-Ga\\n<sub>2</sub>\\nO\\n<sub>3</sub>\\n MOSFETs has been exploited by means of temperature- and pulse-dependent current–voltage (\\n<italic>I</i>\\n–\\n<italic>V</i>\\n) analysis. By reducing the pulse biasing widths, whereby the self-heating effect was negligible, the output characteristics were free of kink but with a rather low drain–source current density (\\n<inline-formula> <tex-math>${I}_{\\\\text {DS}}$ </tex-math></inline-formula>\\n) at a high drain voltage (\\n<inline-formula> <tex-math>${V}_{\\\\text {DS}}$ </tex-math></inline-formula>\\n) of 30 V. The current kink effect started to occur with a direct-current power consumption of approximately 850 mW/mm. The elimination of kink features was also observed together with a large \\n<inline-formula> <tex-math>${I}_{\\\\text {DS}}$ </tex-math></inline-formula>\\n at elevated temperatures over 100 °C. These observations indicate that the kink effect is strongly related to thermal activation of incomplete ionized donors by either the self-heating effect or external intentional heating stress rather than high electric field. In terms of temperature-dependent current output characteristics, the thermal activation energy is determined to be 136 meV, which is consistent with the reported unintentional donors with a high activation energy of 110 meV. It implies that additional electrons are thermally activated and emitted from the incomplete ionized donors in \\n<inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>\\n-Ga\\n<sub>2</sub>\\nO\\n<sub>3</sub>\\n channel or buffer layers through the self-heating effect, contributing to the channel conductivity modulation and the consequent current kink effect. These findings may bridge the knowledge gap between charge transport mechanisms and the reliability degradation of \\n<inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>\\n-Ga\\n<sub>2</sub>\\nO\\n<sub>3</sub>\\n power switches.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10644035/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10644035/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文通过温度和脉冲相关的电流电压(I-V)分析,探讨了 $\beta $ -Ga2O3 MOSFET 中严重的漏源电流扭结效应的根源。通过减小脉冲偏压宽度(自热效应可忽略不计),输出特性不存在扭结,但在 30 V 的高漏极电压({V}_{text {DS}}$)下,漏极-源极电流密度({I}_{text {DS}}$)相当低。在超过 100 °C 的高温条件下,还观察到扭结特征的消除以及较大的 ${I}_{\text {DS}}$。这些观察结果表明,"扭结 "效应与不完全电离供体的热激活密切相关,其原因可能是自加热效应,也可能是外部有意的加热应力,而不是高电场。就随温度变化的电流输出特性而言,热活化能被确定为 136 meV,这与所报道的具有 110 meV 高活化能的无意供体相一致。这意味着额外的电子被热激活,并通过自热效应从$\beta$ -Ga2O3沟道或缓冲层中未完全电离的供体中发射出来,从而导致沟道电导率调制和随之而来的电流扭结效应。这些发现可以弥补电荷传输机制与$\beta $ -Ga2O3功率开关可靠性退化之间的知识差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Current Kink Effect in β-Ga₂O₃ MOSFETs Induced by Incomplete Ionization of Donors
In this article, the origin of severe drain–source current kink effect in $\beta $ -Ga 2 O 3 MOSFETs has been exploited by means of temperature- and pulse-dependent current–voltage ( I – V ) analysis. By reducing the pulse biasing widths, whereby the self-heating effect was negligible, the output characteristics were free of kink but with a rather low drain–source current density ( ${I}_{\text {DS}}$ ) at a high drain voltage ( ${V}_{\text {DS}}$ ) of 30 V. The current kink effect started to occur with a direct-current power consumption of approximately 850 mW/mm. The elimination of kink features was also observed together with a large ${I}_{\text {DS}}$ at elevated temperatures over 100 °C. These observations indicate that the kink effect is strongly related to thermal activation of incomplete ionized donors by either the self-heating effect or external intentional heating stress rather than high electric field. In terms of temperature-dependent current output characteristics, the thermal activation energy is determined to be 136 meV, which is consistent with the reported unintentional donors with a high activation energy of 110 meV. It implies that additional electrons are thermally activated and emitted from the incomplete ionized donors in $\beta $ -Ga 2 O 3 channel or buffer layers through the self-heating effect, contributing to the channel conductivity modulation and the consequent current kink effect. These findings may bridge the knowledge gap between charge transport mechanisms and the reliability degradation of $\beta $ -Ga 2 O 3 power switches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices Corrections to “Electron Emission Regimes of Planar Nano Vacuum Emitters” IEEE Open Access Publishing IEEE ELECTRON DEVICES SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1