{"title":"基于预测的在线两阶段分类法","authors":"Aimin Song, Yan Wang, Shengyang Luan","doi":"10.1007/s00034-024-02843-7","DOIUrl":null,"url":null,"abstract":"<p>Kernel-based online classification algorithms, such as the Perceptron, NORMA, and passive-aggressive, are renowned for their computational efficiency but have been criticized for slow convergence. However, the parallel projection algorithm, within the adaptive projected subgradient method framework, exhibits accelerated convergence and enhanced noise resilience. Despite these advantages, a specific sparsification procedure for the parallel projection algorithm is currently absent. Additionally, existing online classification algorithms, including those mentioned earlier, heavily rely on the kernel width parameter, rendering them sensitive to its choices. In an effort to bolster the performance of these algorithms, we propose a two-stage classification algorithm within the Cartesian product space of reproducing kernel Hilbert spaces. In the initial stage, we introduce an online double-kernel classifier with parallel projection. This design aims not only to improve convergence but also to address the sensitivity to kernel width. In the subsequent stage, the component with a larger kernel width remains fixed, while the component with a smaller kernel width undergoes updates. To promote sparsity and mitigate model complexity, we incorporate the projection-along-subspace technique. Moreover, for enhanced computational efficiency, we integrate the set-membership technique into the updates, selectively exploiting informative vectors to improve the classifier. The monotone approximation of the proposed classifier, based on the designed <span>\\( \\epsilon \\)</span>-insensitive function, is presented. Finally, we apply the proposed algorithm to equalize a nonlinear channel. Simulation results demonstrate that the proposed classifier achieves faster convergence and lower misclassification error with comparable model complexity.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Online Two-Stage Classification Based on Projections\",\"authors\":\"Aimin Song, Yan Wang, Shengyang Luan\",\"doi\":\"10.1007/s00034-024-02843-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kernel-based online classification algorithms, such as the Perceptron, NORMA, and passive-aggressive, are renowned for their computational efficiency but have been criticized for slow convergence. However, the parallel projection algorithm, within the adaptive projected subgradient method framework, exhibits accelerated convergence and enhanced noise resilience. Despite these advantages, a specific sparsification procedure for the parallel projection algorithm is currently absent. Additionally, existing online classification algorithms, including those mentioned earlier, heavily rely on the kernel width parameter, rendering them sensitive to its choices. In an effort to bolster the performance of these algorithms, we propose a two-stage classification algorithm within the Cartesian product space of reproducing kernel Hilbert spaces. In the initial stage, we introduce an online double-kernel classifier with parallel projection. This design aims not only to improve convergence but also to address the sensitivity to kernel width. In the subsequent stage, the component with a larger kernel width remains fixed, while the component with a smaller kernel width undergoes updates. To promote sparsity and mitigate model complexity, we incorporate the projection-along-subspace technique. Moreover, for enhanced computational efficiency, we integrate the set-membership technique into the updates, selectively exploiting informative vectors to improve the classifier. The monotone approximation of the proposed classifier, based on the designed <span>\\\\( \\\\epsilon \\\\)</span>-insensitive function, is presented. Finally, we apply the proposed algorithm to equalize a nonlinear channel. Simulation results demonstrate that the proposed classifier achieves faster convergence and lower misclassification error with comparable model complexity.</p>\",\"PeriodicalId\":10227,\"journal\":{\"name\":\"Circuits, Systems and Signal Processing\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00034-024-02843-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02843-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Online Two-Stage Classification Based on Projections
Kernel-based online classification algorithms, such as the Perceptron, NORMA, and passive-aggressive, are renowned for their computational efficiency but have been criticized for slow convergence. However, the parallel projection algorithm, within the adaptive projected subgradient method framework, exhibits accelerated convergence and enhanced noise resilience. Despite these advantages, a specific sparsification procedure for the parallel projection algorithm is currently absent. Additionally, existing online classification algorithms, including those mentioned earlier, heavily rely on the kernel width parameter, rendering them sensitive to its choices. In an effort to bolster the performance of these algorithms, we propose a two-stage classification algorithm within the Cartesian product space of reproducing kernel Hilbert spaces. In the initial stage, we introduce an online double-kernel classifier with parallel projection. This design aims not only to improve convergence but also to address the sensitivity to kernel width. In the subsequent stage, the component with a larger kernel width remains fixed, while the component with a smaller kernel width undergoes updates. To promote sparsity and mitigate model complexity, we incorporate the projection-along-subspace technique. Moreover, for enhanced computational efficiency, we integrate the set-membership technique into the updates, selectively exploiting informative vectors to improve the classifier. The monotone approximation of the proposed classifier, based on the designed \( \epsilon \)-insensitive function, is presented. Finally, we apply the proposed algorithm to equalize a nonlinear channel. Simulation results demonstrate that the proposed classifier achieves faster convergence and lower misclassification error with comparable model complexity.
期刊介绍:
Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area.
The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing.
The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published.
Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.