基于秩减的时空二维 DOA 估算

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Circuits, Systems and Signal Processing Pub Date : 2024-09-06 DOI:10.1007/s00034-024-02847-3
Heping Shi, Xinyu Weng, Guanghui Yan, Shaohua Wang
{"title":"基于秩减的时空二维 DOA 估算","authors":"Heping Shi, Xinyu Weng, Guanghui Yan, Shaohua Wang","doi":"10.1007/s00034-024-02847-3","DOIUrl":null,"url":null,"abstract":"<p>This letter proposes a two-dimensional direction-of-arrival (2-D DOA) estimation method for conjugate augmented spatial-temporal L-shaped arrays based on the rank-reduction principle. The basic idea of the proposed method is to utilize the spatial-temporal 2-D structure of the data received by the array and the conjugate symmetry of the signal delay auto-correlation function to construct a conjugate augmented spatial-temporal cross-correlation matrix. Then, the properties of the matrix Kronecker product can be utilized to decouple the steering vector of the 2-D angle of arrival and utilize the rank-reduction and one-dimensional spectral peak search to automatically pair the 2-D DOA. The proposed method can handle the 2-D angle-estimation problem under underdetermined cases, and the effectiveness of the proposed method was verified by computer simulations.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":"94 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial-Temporal 2-D DOA Estimation Based on Rank-Reduction\",\"authors\":\"Heping Shi, Xinyu Weng, Guanghui Yan, Shaohua Wang\",\"doi\":\"10.1007/s00034-024-02847-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This letter proposes a two-dimensional direction-of-arrival (2-D DOA) estimation method for conjugate augmented spatial-temporal L-shaped arrays based on the rank-reduction principle. The basic idea of the proposed method is to utilize the spatial-temporal 2-D structure of the data received by the array and the conjugate symmetry of the signal delay auto-correlation function to construct a conjugate augmented spatial-temporal cross-correlation matrix. Then, the properties of the matrix Kronecker product can be utilized to decouple the steering vector of the 2-D angle of arrival and utilize the rank-reduction and one-dimensional spectral peak search to automatically pair the 2-D DOA. The proposed method can handle the 2-D angle-estimation problem under underdetermined cases, and the effectiveness of the proposed method was verified by computer simulations.</p>\",\"PeriodicalId\":10227,\"journal\":{\"name\":\"Circuits, Systems and Signal Processing\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00034-024-02847-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02847-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于秩还原原理的共轭增强时空 L 型阵列二维到达方向(2-DOA)估计方法。该方法的基本思想是利用阵列接收数据的时空二维结构和信号延迟自相关函数的共轭对称性来构建共轭增强时空交叉相关矩阵。然后,利用矩阵 Kronecker 积的特性来解耦二维到达角的转向矢量,并利用秩还原和一维谱峰搜索来自动配对二维 DOA。所提出的方法可以处理欠定情况下的二维角度估计问题,并通过计算机仿真验证了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial-Temporal 2-D DOA Estimation Based on Rank-Reduction

This letter proposes a two-dimensional direction-of-arrival (2-D DOA) estimation method for conjugate augmented spatial-temporal L-shaped arrays based on the rank-reduction principle. The basic idea of the proposed method is to utilize the spatial-temporal 2-D structure of the data received by the array and the conjugate symmetry of the signal delay auto-correlation function to construct a conjugate augmented spatial-temporal cross-correlation matrix. Then, the properties of the matrix Kronecker product can be utilized to decouple the steering vector of the 2-D angle of arrival and utilize the rank-reduction and one-dimensional spectral peak search to automatically pair the 2-D DOA. The proposed method can handle the 2-D angle-estimation problem under underdetermined cases, and the effectiveness of the proposed method was verified by computer simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circuits, Systems and Signal Processing
Circuits, Systems and Signal Processing 工程技术-工程:电子与电气
CiteScore
4.80
自引率
13.00%
发文量
321
审稿时长
4.6 months
期刊介绍: Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area. The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing. The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published. Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.
期刊最新文献
Squeeze-and-Excitation Self-Attention Mechanism Enhanced Digital Audio Source Recognition Based on Transfer Learning Recursive Windowed Variational Mode Decomposition Discrete-Time Delta-Sigma Modulator with Successively Approximating Register ADC Assisted Analog Feedback Technique Individually Weighted Modified Logarithmic Hyperbolic Sine Curvelet Based Recursive FLN for Nonlinear System Identification Event-Triggered $$H_{\infty }$$ Filtering for A Class of Nonlinear Systems Under DoS Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1