引领可持续发展应用,实现更负责任的逻辑技术开发

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-08-14 DOI:10.1109/TSM.2024.3438098
Teresa E. Bodtker;Richard A. Riley;Soley Ozer;Sanaz K. Gardner;Ryan J. Russell;Jeffrey Birdsall;Sam P. Johnson
{"title":"引领可持续发展应用,实现更负责任的逻辑技术开发","authors":"Teresa E. Bodtker;Richard A. Riley;Soley Ozer;Sanaz K. Gardner;Ryan J. Russell;Jeffrey Birdsall;Sam P. Johnson","doi":"10.1109/TSM.2024.3438098","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to outline the path that Intel has been taking to drive sustainable semiconductor manufacturing processes. As new sites are built to deliver Intel’s Design & Manufacturing (IDM) 2.0 strategy, we expand and grow our manufacturing output and facilities scope. To minimize environmental impact, there was focus on chemical and water usage reduction, chemical reuse, improvement of Destruction Removal Efficiencies (DRE), abatement of hazardous by-products, & innovation of novel Point of Use (POU) systems. There is also commitment to replacing fossil fuel with electrically driven alternatives and/or renewable natural gas. There has been a collective approach in the decarbonization methodology for all manufacturing emissions through technology-based innovations to reduce climate impact in global manufacturing. Intel also engages with suppliers and customers with a focus on reducing waste and wastewater emissions by leveraging technology to reduce environmental impacts on global manufacturing. There has been a focus on enabling greener circular economy strategies across the industry value chain by transforming its chemical footprint methodology. Collaboration with others to lead the way in the semiconductor sector has led to accelerating progress on reducing climate impact by advancing sustainable and green chemistry use. Intel strives to achieve renewable energy use and energy conservation across its global manufacturing operations, along with maximizing water conservation and implementing novel technologies to drive reduction in greenhouse gases.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"428-432"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leading Sustainability Applications for More Responsible Logic Technology Development\",\"authors\":\"Teresa E. Bodtker;Richard A. Riley;Soley Ozer;Sanaz K. Gardner;Ryan J. Russell;Jeffrey Birdsall;Sam P. Johnson\",\"doi\":\"10.1109/TSM.2024.3438098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to outline the path that Intel has been taking to drive sustainable semiconductor manufacturing processes. As new sites are built to deliver Intel’s Design & Manufacturing (IDM) 2.0 strategy, we expand and grow our manufacturing output and facilities scope. To minimize environmental impact, there was focus on chemical and water usage reduction, chemical reuse, improvement of Destruction Removal Efficiencies (DRE), abatement of hazardous by-products, & innovation of novel Point of Use (POU) systems. There is also commitment to replacing fossil fuel with electrically driven alternatives and/or renewable natural gas. There has been a collective approach in the decarbonization methodology for all manufacturing emissions through technology-based innovations to reduce climate impact in global manufacturing. Intel also engages with suppliers and customers with a focus on reducing waste and wastewater emissions by leveraging technology to reduce environmental impacts on global manufacturing. There has been a focus on enabling greener circular economy strategies across the industry value chain by transforming its chemical footprint methodology. Collaboration with others to lead the way in the semiconductor sector has led to accelerating progress on reducing climate impact by advancing sustainable and green chemistry use. Intel strives to achieve renewable energy use and energy conservation across its global manufacturing operations, along with maximizing water conservation and implementing novel technologies to drive reduction in greenhouse gases.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"37 4\",\"pages\":\"428-432\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10636838/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10636838/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在概述英特尔为推动可持续发展的半导体制造工艺所走过的道路。随着英特尔设计与制造 (IDM) 2.0 战略的实施,我们不断扩大和增加制造产量和设施范围。为了最大限度地减少对环境的影响,我们重点关注减少化学品和水的使用、化学品再利用、提高销毁去除效率 (DRE)、减少有害副产品以及创新使用点 (POU) 系统。此外,还致力于用电力驱动的替代品和/或可再生天然气替代化石燃料。通过基于技术的创新,英特尔在所有制造业排放的去碳化方法中都采用了集体方法,以减少全球制造业对气候的影响。英特尔还与供应商和客户合作,利用技术减少废物和废水排放,从而降低全球制造业对环境的影响。英特尔一直致力于通过改变其化学足迹方法,在整个产业价值链中推行更环保的循环经济战略。英特尔与其他公司合作,在半导体领域引领潮流,通过推进可持续和绿色化学的使用,加快了减少气候影响的步伐。英特尔努力在其全球生产运营中实现可再生能源的使用和节能,同时最大限度地节约用水,并采用新技术推动温室气体减排。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leading Sustainability Applications for More Responsible Logic Technology Development
The purpose of this paper is to outline the path that Intel has been taking to drive sustainable semiconductor manufacturing processes. As new sites are built to deliver Intel’s Design & Manufacturing (IDM) 2.0 strategy, we expand and grow our manufacturing output and facilities scope. To minimize environmental impact, there was focus on chemical and water usage reduction, chemical reuse, improvement of Destruction Removal Efficiencies (DRE), abatement of hazardous by-products, & innovation of novel Point of Use (POU) systems. There is also commitment to replacing fossil fuel with electrically driven alternatives and/or renewable natural gas. There has been a collective approach in the decarbonization methodology for all manufacturing emissions through technology-based innovations to reduce climate impact in global manufacturing. Intel also engages with suppliers and customers with a focus on reducing waste and wastewater emissions by leveraging technology to reduce environmental impacts on global manufacturing. There has been a focus on enabling greener circular economy strategies across the industry value chain by transforming its chemical footprint methodology. Collaboration with others to lead the way in the semiconductor sector has led to accelerating progress on reducing climate impact by advancing sustainable and green chemistry use. Intel strives to achieve renewable energy use and energy conservation across its global manufacturing operations, along with maximizing water conservation and implementing novel technologies to drive reduction in greenhouse gases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
期刊最新文献
2024 Index IEEE Transactions on Semiconductor Manufacturing Vol. 37 Front Cover Editorial Table of Contents IEEE Transactions on Semiconductor Manufacturing Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1