注入式交叉耦合振荡器非对称锁定范围的非线性分析

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Circuits, Systems and Signal Processing Pub Date : 2024-09-02 DOI:10.1007/s00034-024-02834-8
Armin Mohammadjany, Ali Reza Hazeri, Hossein Miar-Naimi
{"title":"注入式交叉耦合振荡器非对称锁定范围的非线性分析","authors":"Armin Mohammadjany, Ali Reza Hazeri, Hossein Miar-Naimi","doi":"10.1007/s00034-024-02834-8","DOIUrl":null,"url":null,"abstract":"<p>In this article, two accurate nonlinear methods are proposed to calculate non-symmetrical locking ranges of the Injected Cross-Coupled Oscillator (ICCO) with the parallel RLC tank and series RL with a parallel C tank for both weak and strong injection levels. By writing governing differential equations of circuit elements of the ICCO, graphical presenting of current vectors, and using the averaging method for solving nonlinear equations, equations of the ICCO are simplified. Then, exact non-symmetrical locking ranges are calculated using the iterative method. Moreover, the describing function of the oscillator’s nonlinear part, an inverse tangent function, is applied to the model. The inverse tangent function generates complicated governing differential equations of circuit elements that are accurate. Then, it is solved to ICCO for the first time and has novel results for calculating non-symmetrical locking ranges. There is a good agreement between theoretical and simulation results. The proposed non-symmetrical locking ranges are accurate in both weak and strong injections. The absolute percent of errors for various levels of the injection signal is less than 20%. In the bargain, proposed locking ranges are the most accurate compared to previously published results.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":"20 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Analyses of Unsymmetrical Locking Range of Injected Cross-Coupled Oscillator\",\"authors\":\"Armin Mohammadjany, Ali Reza Hazeri, Hossein Miar-Naimi\",\"doi\":\"10.1007/s00034-024-02834-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, two accurate nonlinear methods are proposed to calculate non-symmetrical locking ranges of the Injected Cross-Coupled Oscillator (ICCO) with the parallel RLC tank and series RL with a parallel C tank for both weak and strong injection levels. By writing governing differential equations of circuit elements of the ICCO, graphical presenting of current vectors, and using the averaging method for solving nonlinear equations, equations of the ICCO are simplified. Then, exact non-symmetrical locking ranges are calculated using the iterative method. Moreover, the describing function of the oscillator’s nonlinear part, an inverse tangent function, is applied to the model. The inverse tangent function generates complicated governing differential equations of circuit elements that are accurate. Then, it is solved to ICCO for the first time and has novel results for calculating non-symmetrical locking ranges. There is a good agreement between theoretical and simulation results. The proposed non-symmetrical locking ranges are accurate in both weak and strong injections. The absolute percent of errors for various levels of the injection signal is less than 20%. In the bargain, proposed locking ranges are the most accurate compared to previously published results.</p>\",\"PeriodicalId\":10227,\"journal\":{\"name\":\"Circuits, Systems and Signal Processing\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00034-024-02834-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02834-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了两种精确的非线性方法,用于计算带有并联 RLC 槽和带有并联 C 槽的串联 RL 的注入式交叉耦合振荡器 (ICCO) 在弱和强注入水平下的非对称锁定范围。通过书写 ICCO 电路元件的调控微分方程、电流矢量的图示以及使用求解非线性方程的平均法,简化了 ICCO 的方程。然后,利用迭代法计算出精确的非对称锁定范围。此外,还将振荡器非线性部分的描述函数--反正切函数应用于模型。反正切函数会产生复杂的电路元件精确控制微分方程。然后,首次对 ICCO 进行求解,并得出了计算非对称锁定范围的新结果。理论结果与仿真结果非常吻合。所提出的非对称锁定范围在弱注入和强注入时都是准确的。不同电平注入信号的绝对误差小于 20%。在讨价还价中,与之前公布的结果相比,建议的锁定范围是最准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear Analyses of Unsymmetrical Locking Range of Injected Cross-Coupled Oscillator

In this article, two accurate nonlinear methods are proposed to calculate non-symmetrical locking ranges of the Injected Cross-Coupled Oscillator (ICCO) with the parallel RLC tank and series RL with a parallel C tank for both weak and strong injection levels. By writing governing differential equations of circuit elements of the ICCO, graphical presenting of current vectors, and using the averaging method for solving nonlinear equations, equations of the ICCO are simplified. Then, exact non-symmetrical locking ranges are calculated using the iterative method. Moreover, the describing function of the oscillator’s nonlinear part, an inverse tangent function, is applied to the model. The inverse tangent function generates complicated governing differential equations of circuit elements that are accurate. Then, it is solved to ICCO for the first time and has novel results for calculating non-symmetrical locking ranges. There is a good agreement between theoretical and simulation results. The proposed non-symmetrical locking ranges are accurate in both weak and strong injections. The absolute percent of errors for various levels of the injection signal is less than 20%. In the bargain, proposed locking ranges are the most accurate compared to previously published results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circuits, Systems and Signal Processing
Circuits, Systems and Signal Processing 工程技术-工程:电子与电气
CiteScore
4.80
自引率
13.00%
发文量
321
审稿时长
4.6 months
期刊介绍: Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area. The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing. The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published. Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.
期刊最新文献
Squeeze-and-Excitation Self-Attention Mechanism Enhanced Digital Audio Source Recognition Based on Transfer Learning Recursive Windowed Variational Mode Decomposition Discrete-Time Delta-Sigma Modulator with Successively Approximating Register ADC Assisted Analog Feedback Technique Individually Weighted Modified Logarithmic Hyperbolic Sine Curvelet Based Recursive FLN for Nonlinear System Identification Event-Triggered $$H_{\infty }$$ Filtering for A Class of Nonlinear Systems Under DoS Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1