Leonardo Francisco Rafael Lemes, Frederico Luis Felipe Soares, Noemi Nagata
{"title":"利用激发-发射矩阵 (EEM) 荧光光谱法和多路校准法测定驱虫剂中的 DEET、淫羊藿苷和 IR3535","authors":"Leonardo Francisco Rafael Lemes, Frederico Luis Felipe Soares, Noemi Nagata","doi":"10.1016/j.microc.2024.111601","DOIUrl":null,"url":null,"abstract":"Due to rising temperatures in recent years, there has been an increase in outbreaks of arboviral diseases like Dengue, chikungunya, Zika, and yellow fever, which are primarily transmitted by two mosquitos. The outbreak has sparked significant concern among the population and prompted countries to heighten their precautions, specially by increasing the use of insects repellents. Regarding the regulatory demands of these products, this study develops a novel analytical method for the determination of DEET, Icaridin, and IR3535 in insect repellents combining excitation-emission matrix (EEM) fluorescence spectroscopy with higher-order multivariate calibration techniques. For this purpose, a dataset comprising 21 samples containing the studied active ingredients was used to construct Parallel Factor Analysis (PARAFAC) and Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) models. As a result, DEET, Icaridin, and IR3535 were quantified with a RMSEP lower than 1.84% for PARAFAC and below 11.30% for MCR-ALS. The EJCR test confirmed the accuracy of the proposed methods, which agreed with the high-performance liquid chromatography reference method at a 95% confidence level. These findings suggest that developing multiway calibration models using EEM proves to be accurate and cost-effective for quality control in repellent-based products.","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of DEET, Icaridin, and IR3535 in insect repellents using excitation-emission matrix (EEM) fluorescence spectroscopy and multiway calibration\",\"authors\":\"Leonardo Francisco Rafael Lemes, Frederico Luis Felipe Soares, Noemi Nagata\",\"doi\":\"10.1016/j.microc.2024.111601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to rising temperatures in recent years, there has been an increase in outbreaks of arboviral diseases like Dengue, chikungunya, Zika, and yellow fever, which are primarily transmitted by two mosquitos. The outbreak has sparked significant concern among the population and prompted countries to heighten their precautions, specially by increasing the use of insects repellents. Regarding the regulatory demands of these products, this study develops a novel analytical method for the determination of DEET, Icaridin, and IR3535 in insect repellents combining excitation-emission matrix (EEM) fluorescence spectroscopy with higher-order multivariate calibration techniques. For this purpose, a dataset comprising 21 samples containing the studied active ingredients was used to construct Parallel Factor Analysis (PARAFAC) and Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) models. As a result, DEET, Icaridin, and IR3535 were quantified with a RMSEP lower than 1.84% for PARAFAC and below 11.30% for MCR-ALS. The EJCR test confirmed the accuracy of the proposed methods, which agreed with the high-performance liquid chromatography reference method at a 95% confidence level. These findings suggest that developing multiway calibration models using EEM proves to be accurate and cost-effective for quality control in repellent-based products.\",\"PeriodicalId\":391,\"journal\":{\"name\":\"Microchemical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchemical Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.microc.2024.111601\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.microc.2024.111601","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Determination of DEET, Icaridin, and IR3535 in insect repellents using excitation-emission matrix (EEM) fluorescence spectroscopy and multiway calibration
Due to rising temperatures in recent years, there has been an increase in outbreaks of arboviral diseases like Dengue, chikungunya, Zika, and yellow fever, which are primarily transmitted by two mosquitos. The outbreak has sparked significant concern among the population and prompted countries to heighten their precautions, specially by increasing the use of insects repellents. Regarding the regulatory demands of these products, this study develops a novel analytical method for the determination of DEET, Icaridin, and IR3535 in insect repellents combining excitation-emission matrix (EEM) fluorescence spectroscopy with higher-order multivariate calibration techniques. For this purpose, a dataset comprising 21 samples containing the studied active ingredients was used to construct Parallel Factor Analysis (PARAFAC) and Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) models. As a result, DEET, Icaridin, and IR3535 were quantified with a RMSEP lower than 1.84% for PARAFAC and below 11.30% for MCR-ALS. The EJCR test confirmed the accuracy of the proposed methods, which agreed with the high-performance liquid chromatography reference method at a 95% confidence level. These findings suggest that developing multiway calibration models using EEM proves to be accurate and cost-effective for quality control in repellent-based products.
期刊介绍:
The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field.
Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.