{"title":"现场重金属检测的进展:在溶液中通过激光烧蚀合成获得的球形银纳米粒子的特性和对 Hg2+ 的灵敏感应","authors":"J.O. Esquivel-Rincón, A.R. Vilchis-Nestor, V.F. Ruiz-Ruiz, O.F. Olea-Mejía","doi":"10.1016/j.microc.2024.111597","DOIUrl":null,"url":null,"abstract":"Heavy metal detection in water bodies is crucial to prevent potential harm to the environment, animals and humans. While powerful techniques such as atomic absorption spectrometry exist, they often require extensive sample preparation and are typically confined to laboratory settings. As a result, alternative detection methods such as optical sensors, are under development to provide a simpler, faster, and on-site detection solution. In the present work spheroidal silver nanoparticles (AgNPs) with a mean size of 14.7 ± 0.6 nm were synthesized by laser ablation in a sodium citrate solution. These nanoparticles exhibit a localized surface plasmon resonance (LSPR), which is profoundly dependent on the size, morphology and composition of the nanoparticles and the refractive index of the surrounding media. The detection capabilities of these nanoparticles were assessed by exposing them to various metal ions, revealing a distinctive sensitivity to Hg ions. Notably, this particular ion had a significant impact on the extinction curve of the AgNPs. The impact of synthesis parameters, including sodium citrate and NaCl concentration, as well as pH, on the efficacy of Hg detection was systematically studied. Characterization techniques such as Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), High-Resolution TEM (HRTEM), and Scanning Transmission Electron Microscopy (STEM) were employed to determine the size, morphology, distribution, crystalline structure, and elemental composition of the AgNPs. The results indicated that AgNPs synthesized through laser ablation in a sodium citrate solution exhibited sensitive detection capabilities for Hg ions, reaching an LOD and LOQ of 0.9355 μM and 2.8350 μM respectively.","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in on-site heavy metal detection: Characterizing and sensitive Hg2+ sensing of silver spheroid nanoparticles obtained by laser ablation synthesis in solution\",\"authors\":\"J.O. Esquivel-Rincón, A.R. Vilchis-Nestor, V.F. Ruiz-Ruiz, O.F. Olea-Mejía\",\"doi\":\"10.1016/j.microc.2024.111597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heavy metal detection in water bodies is crucial to prevent potential harm to the environment, animals and humans. While powerful techniques such as atomic absorption spectrometry exist, they often require extensive sample preparation and are typically confined to laboratory settings. As a result, alternative detection methods such as optical sensors, are under development to provide a simpler, faster, and on-site detection solution. In the present work spheroidal silver nanoparticles (AgNPs) with a mean size of 14.7 ± 0.6 nm were synthesized by laser ablation in a sodium citrate solution. These nanoparticles exhibit a localized surface plasmon resonance (LSPR), which is profoundly dependent on the size, morphology and composition of the nanoparticles and the refractive index of the surrounding media. The detection capabilities of these nanoparticles were assessed by exposing them to various metal ions, revealing a distinctive sensitivity to Hg ions. Notably, this particular ion had a significant impact on the extinction curve of the AgNPs. The impact of synthesis parameters, including sodium citrate and NaCl concentration, as well as pH, on the efficacy of Hg detection was systematically studied. Characterization techniques such as Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), High-Resolution TEM (HRTEM), and Scanning Transmission Electron Microscopy (STEM) were employed to determine the size, morphology, distribution, crystalline structure, and elemental composition of the AgNPs. The results indicated that AgNPs synthesized through laser ablation in a sodium citrate solution exhibited sensitive detection capabilities for Hg ions, reaching an LOD and LOQ of 0.9355 μM and 2.8350 μM respectively.\",\"PeriodicalId\":391,\"journal\":{\"name\":\"Microchemical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchemical Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.microc.2024.111597\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.microc.2024.111597","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Advancements in on-site heavy metal detection: Characterizing and sensitive Hg2+ sensing of silver spheroid nanoparticles obtained by laser ablation synthesis in solution
Heavy metal detection in water bodies is crucial to prevent potential harm to the environment, animals and humans. While powerful techniques such as atomic absorption spectrometry exist, they often require extensive sample preparation and are typically confined to laboratory settings. As a result, alternative detection methods such as optical sensors, are under development to provide a simpler, faster, and on-site detection solution. In the present work spheroidal silver nanoparticles (AgNPs) with a mean size of 14.7 ± 0.6 nm were synthesized by laser ablation in a sodium citrate solution. These nanoparticles exhibit a localized surface plasmon resonance (LSPR), which is profoundly dependent on the size, morphology and composition of the nanoparticles and the refractive index of the surrounding media. The detection capabilities of these nanoparticles were assessed by exposing them to various metal ions, revealing a distinctive sensitivity to Hg ions. Notably, this particular ion had a significant impact on the extinction curve of the AgNPs. The impact of synthesis parameters, including sodium citrate and NaCl concentration, as well as pH, on the efficacy of Hg detection was systematically studied. Characterization techniques such as Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), High-Resolution TEM (HRTEM), and Scanning Transmission Electron Microscopy (STEM) were employed to determine the size, morphology, distribution, crystalline structure, and elemental composition of the AgNPs. The results indicated that AgNPs synthesized through laser ablation in a sodium citrate solution exhibited sensitive detection capabilities for Hg ions, reaching an LOD and LOQ of 0.9355 μM and 2.8350 μM respectively.
期刊介绍:
The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field.
Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.