Yeonhwa Kim, Hyun-Beom Shin, Eunkyo Ju, May Angelu Madarang, Rafael Jumar Chu, Tsimafei Laryn, Taehee Kim, In-Hwan Lee, Ho Kwan Kang, Won Jun Choi, Daehwan Jung
{"title":"位错和残余热张力对单片集成 InGaP/GaAs/Si 三结太阳能电池的影响","authors":"Yeonhwa Kim, Hyun-Beom Shin, Eunkyo Ju, May Angelu Madarang, Rafael Jumar Chu, Tsimafei Laryn, Taehee Kim, In-Hwan Lee, Ho Kwan Kang, Won Jun Choi, Daehwan Jung","doi":"10.1002/solr.202400318","DOIUrl":null,"url":null,"abstract":"<p>Direct epitaxy of III−V materials on Si is a promising approach for highly stable, scalable, and efficient Si-based multijunction solar cells. However, challenges lie in overcoming epitaxial dislocations and residual thermal strain generated by lattice constant and thermal-expansion-coefficient mismatches, respectively. Herein, a 15.2% efficient InGaP/GaAs/Si triple-junction solar cell with an open-circuit voltage of 2.36 V by using In<sub>0.10</sub>Al<sub>0.16</sub>Ga<sub>0.74</sub>As digital-alloy dislocation filter layers is first demonstrated. The filter layers are utilized in the n-GaAs buffer on Si to reduce threading dislocation density to 4 × 10<sup>7</sup> cm<sup>−2</sup> while maintaining optical transparency to Si bottom cell. Then, the impacts of threading dislocations and residual tension on InGaP/GaAs/Si cells are systematically investigated by comparing them to the co-grown InGaP/GaAs tandem cells on a native GaAs substrate. Based on the comparative analysis, a strategy to suppress material deformation and defect formation toward 30% efficient InGaP/GaAs/Si triple-junction solar cells is proposed.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 18","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of Dislocations and Residual Thermal Tension on Monolithically Integrated InGaP/GaAs/Si Triple-Junction Solar Cells\",\"authors\":\"Yeonhwa Kim, Hyun-Beom Shin, Eunkyo Ju, May Angelu Madarang, Rafael Jumar Chu, Tsimafei Laryn, Taehee Kim, In-Hwan Lee, Ho Kwan Kang, Won Jun Choi, Daehwan Jung\",\"doi\":\"10.1002/solr.202400318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Direct epitaxy of III−V materials on Si is a promising approach for highly stable, scalable, and efficient Si-based multijunction solar cells. However, challenges lie in overcoming epitaxial dislocations and residual thermal strain generated by lattice constant and thermal-expansion-coefficient mismatches, respectively. Herein, a 15.2% efficient InGaP/GaAs/Si triple-junction solar cell with an open-circuit voltage of 2.36 V by using In<sub>0.10</sub>Al<sub>0.16</sub>Ga<sub>0.74</sub>As digital-alloy dislocation filter layers is first demonstrated. The filter layers are utilized in the n-GaAs buffer on Si to reduce threading dislocation density to 4 × 10<sup>7</sup> cm<sup>−2</sup> while maintaining optical transparency to Si bottom cell. Then, the impacts of threading dislocations and residual tension on InGaP/GaAs/Si cells are systematically investigated by comparing them to the co-grown InGaP/GaAs tandem cells on a native GaAs substrate. Based on the comparative analysis, a strategy to suppress material deformation and defect formation toward 30% efficient InGaP/GaAs/Si triple-junction solar cells is proposed.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"8 18\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400318\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400318","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Impacts of Dislocations and Residual Thermal Tension on Monolithically Integrated InGaP/GaAs/Si Triple-Junction Solar Cells
Direct epitaxy of III−V materials on Si is a promising approach for highly stable, scalable, and efficient Si-based multijunction solar cells. However, challenges lie in overcoming epitaxial dislocations and residual thermal strain generated by lattice constant and thermal-expansion-coefficient mismatches, respectively. Herein, a 15.2% efficient InGaP/GaAs/Si triple-junction solar cell with an open-circuit voltage of 2.36 V by using In0.10Al0.16Ga0.74As digital-alloy dislocation filter layers is first demonstrated. The filter layers are utilized in the n-GaAs buffer on Si to reduce threading dislocation density to 4 × 107 cm−2 while maintaining optical transparency to Si bottom cell. Then, the impacts of threading dislocations and residual tension on InGaP/GaAs/Si cells are systematically investigated by comparing them to the co-grown InGaP/GaAs tandem cells on a native GaAs substrate. Based on the comparative analysis, a strategy to suppress material deformation and defect formation toward 30% efficient InGaP/GaAs/Si triple-junction solar cells is proposed.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.