高性能室内有机光伏的全向光学工程和三元策略

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-08-20 DOI:10.1002/solr.202400483
Kaiwen Zheng, Baozhong Deng, Zhouyi Lu, Luqiao Yin, Shenghao Wang, Hongliang Dong, Esther Mbina, Kekeli N'konou, Bruno Grandidier, Tao Xu
{"title":"高性能室内有机光伏的全向光学工程和三元策略","authors":"Kaiwen Zheng,&nbsp;Baozhong Deng,&nbsp;Zhouyi Lu,&nbsp;Luqiao Yin,&nbsp;Shenghao Wang,&nbsp;Hongliang Dong,&nbsp;Esther Mbina,&nbsp;Kekeli N'konou,&nbsp;Bruno Grandidier,&nbsp;Tao Xu","doi":"10.1002/solr.202400483","DOIUrl":null,"url":null,"abstract":"<p>Indoor organic photovoltaics (IOPVs) with tunable absorption spectra and relatively high power conversion efficiency (PCE) have emerged as one of the most promising energy sources for Internet of Things devices, but enhancing the device performance under various directions of indoor illumination is challenging. Herein, it is proposed to combine omnidirectional optical engineering and ternary strategy for achieving high-performance IOPVs. The advantage is taken of a ternary bulk heterojunction (BHJ) with a polymer donor having aligned absorption spectra with the light-emitting diode (LED) spectrum and a guest component that not only blueshifts the near-infrared absorption of the acceptor but also improves electrical and morphological properties of the BHJ. A 2D photonic-structured antireflection coating is further developed to selectively improve the light absorption of IOPVs, leading to a PCE of 29.07% under 1000 lux LED illumination. More importantly, the antireflection coating maintains the initial PCE even when irradiated by light incident at large angles, demonstrating an omnidirectional effectiveness. This weaker angular dependency on light absorption provides practical prospects for future sustainable indoor photovoltaic systems.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 18","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Omnidirectional Optical Engineering and Ternary Strategy for High-Performance Indoor Organic Photovoltaics\",\"authors\":\"Kaiwen Zheng,&nbsp;Baozhong Deng,&nbsp;Zhouyi Lu,&nbsp;Luqiao Yin,&nbsp;Shenghao Wang,&nbsp;Hongliang Dong,&nbsp;Esther Mbina,&nbsp;Kekeli N'konou,&nbsp;Bruno Grandidier,&nbsp;Tao Xu\",\"doi\":\"10.1002/solr.202400483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Indoor organic photovoltaics (IOPVs) with tunable absorption spectra and relatively high power conversion efficiency (PCE) have emerged as one of the most promising energy sources for Internet of Things devices, but enhancing the device performance under various directions of indoor illumination is challenging. Herein, it is proposed to combine omnidirectional optical engineering and ternary strategy for achieving high-performance IOPVs. The advantage is taken of a ternary bulk heterojunction (BHJ) with a polymer donor having aligned absorption spectra with the light-emitting diode (LED) spectrum and a guest component that not only blueshifts the near-infrared absorption of the acceptor but also improves electrical and morphological properties of the BHJ. A 2D photonic-structured antireflection coating is further developed to selectively improve the light absorption of IOPVs, leading to a PCE of 29.07% under 1000 lux LED illumination. More importantly, the antireflection coating maintains the initial PCE even when irradiated by light incident at large angles, demonstrating an omnidirectional effectiveness. This weaker angular dependency on light absorption provides practical prospects for future sustainable indoor photovoltaic systems.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"8 18\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400483\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400483","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

室内有机光伏(IOPV)具有可调的吸收光谱和相对较高的功率转换效率(PCE),已成为物联网设备中最有前途的能源之一,但要在室内不同方向的光照下提高设备性能却很有挑战性。本文提出将全向光学工程与三元策略相结合,以实现高性能的 IOPV。利用三元体异质结(BHJ)的优势,聚合物供体的吸收光谱与发光二极管(LED)光谱一致,而客体成分不仅能蓝移受体的近红外吸收,还能改善 BHJ 的电学和形态特性。进一步开发的二维光子结构抗反射涂层可选择性地改善 IOPV 的光吸收,从而在 1000 勒克斯 LED 照明下实现 29.07% 的 PCE。更重要的是,即使在大角度入射光照射下,抗反射涂层仍能保持初始 PCE,显示出全方位的功效。这种较弱的光吸收角度依赖性为未来的可持续室内光伏系统提供了切实可行的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Omnidirectional Optical Engineering and Ternary Strategy for High-Performance Indoor Organic Photovoltaics

Indoor organic photovoltaics (IOPVs) with tunable absorption spectra and relatively high power conversion efficiency (PCE) have emerged as one of the most promising energy sources for Internet of Things devices, but enhancing the device performance under various directions of indoor illumination is challenging. Herein, it is proposed to combine omnidirectional optical engineering and ternary strategy for achieving high-performance IOPVs. The advantage is taken of a ternary bulk heterojunction (BHJ) with a polymer donor having aligned absorption spectra with the light-emitting diode (LED) spectrum and a guest component that not only blueshifts the near-infrared absorption of the acceptor but also improves electrical and morphological properties of the BHJ. A 2D photonic-structured antireflection coating is further developed to selectively improve the light absorption of IOPVs, leading to a PCE of 29.07% under 1000 lux LED illumination. More importantly, the antireflection coating maintains the initial PCE even when irradiated by light incident at large angles, demonstrating an omnidirectional effectiveness. This weaker angular dependency on light absorption provides practical prospects for future sustainable indoor photovoltaic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Masthead Revealing Defect Passivation and Charge Extraction by Ultrafast Spectroscopy in Perovskite Solar Cells through a Multifunctional Lewis Base Additive Approach Perovskite-Based Tandem Solar Cells Masthead Investigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1