卤化物过氧化物太阳能电池的绿色溶液加工:现状与未来方向

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-09-10 DOI:10.1002/solr.202400262
Jonghoon Han, Ran Hee Kim, Shujuan Huang, Jincheol Kim, Jae Sung Yun
{"title":"卤化物过氧化物太阳能电池的绿色溶液加工:现状与未来方向","authors":"Jonghoon Han, Ran Hee Kim, Shujuan Huang, Jincheol Kim, Jae Sung Yun","doi":"10.1002/solr.202400262","DOIUrl":null,"url":null,"abstract":"Halide perovskite solar cells have achieved impressive efficiencies above 26%, making them a promising technology for the future of solar energy. However, the current fabrication methods rely on highly toxic solvents, which pose significant safety and environmental hazards. It is crucial to develop greener and safer alternatives to these solvents to facilitate the commercialization of perovskite solar cells. In this review, the safety and hazard evaluations of conventional toxic solvents and discuss the selection criteria for solvents that affect the morphology, nucleation, crystallization, and performance of perovskite solar cells. Furthermore, recent research into green solvent alternatives is evaluated and their properties are compared to those of commonly used solvents. In this review, fundamental insights are provided into the progress and challenges of green‐solution processing of perovskite solar cells, which will be essential for advancing this technology toward commercialization.","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"94 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Solution Processing of Halide Perovskite Solar Cells: Status and Future Directions\",\"authors\":\"Jonghoon Han, Ran Hee Kim, Shujuan Huang, Jincheol Kim, Jae Sung Yun\",\"doi\":\"10.1002/solr.202400262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Halide perovskite solar cells have achieved impressive efficiencies above 26%, making them a promising technology for the future of solar energy. However, the current fabrication methods rely on highly toxic solvents, which pose significant safety and environmental hazards. It is crucial to develop greener and safer alternatives to these solvents to facilitate the commercialization of perovskite solar cells. In this review, the safety and hazard evaluations of conventional toxic solvents and discuss the selection criteria for solvents that affect the morphology, nucleation, crystallization, and performance of perovskite solar cells. Furthermore, recent research into green solvent alternatives is evaluated and their properties are compared to those of commonly used solvents. In this review, fundamental insights are provided into the progress and challenges of green‐solution processing of perovskite solar cells, which will be essential for advancing this technology toward commercialization.\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/solr.202400262\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/solr.202400262","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

卤化物过氧化物太阳能电池的效率已达到令人印象深刻的 26% 以上,使其成为未来太阳能的一项前景广阔的技术。然而,目前的制造方法依赖于剧毒溶剂,会对安全和环境造成严重危害。因此,开发更环保、更安全的溶剂替代品对促进包晶体太阳能电池的商业化至关重要。本综述对传统有毒溶剂的安全性和危害性进行了评估,并讨论了影响包晶体太阳能电池形态、成核、结晶和性能的溶剂的选择标准。此外,还评估了最近对绿色溶剂替代品的研究,并将其特性与常用溶剂的特性进行了比较。本综述从根本上揭示了用绿色溶剂处理包晶体太阳能电池所取得的进展和面临的挑战,这对于推动该技术实现商业化至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Green Solution Processing of Halide Perovskite Solar Cells: Status and Future Directions
Halide perovskite solar cells have achieved impressive efficiencies above 26%, making them a promising technology for the future of solar energy. However, the current fabrication methods rely on highly toxic solvents, which pose significant safety and environmental hazards. It is crucial to develop greener and safer alternatives to these solvents to facilitate the commercialization of perovskite solar cells. In this review, the safety and hazard evaluations of conventional toxic solvents and discuss the selection criteria for solvents that affect the morphology, nucleation, crystallization, and performance of perovskite solar cells. Furthermore, recent research into green solvent alternatives is evaluated and their properties are compared to those of commonly used solvents. In this review, fundamental insights are provided into the progress and challenges of green‐solution processing of perovskite solar cells, which will be essential for advancing this technology toward commercialization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Masthead Revealing Defect Passivation and Charge Extraction by Ultrafast Spectroscopy in Perovskite Solar Cells through a Multifunctional Lewis Base Additive Approach Perovskite-Based Tandem Solar Cells Masthead Investigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1