{"title":"抑制铬化锑薄膜太阳能电池中的非辐射重组损耗综述","authors":"Yike Liu, Shunjian Xu, Yongping Luo, Guojie Chen, Shuo Chen, Zhuanghao Zheng, Guangxing Liang","doi":"10.1002/solr.202400499","DOIUrl":null,"url":null,"abstract":"<p>Antimony chalcogenide solar cells have captured considerable attention in recent years with an efficiency of over 10%, due to their use of Earth-abundant materials and superior physical characteristics. Despite these achievements, significant nonradiative recombination processes within these solar cells present a substantial obstacle to further efficiency improvements. Therefore, this review delves into the primary mechanisms responsible for nonradiative recombination losses in antimony chalcogenide solar cells. Additionally, the latest advancements in addressing these losses are summarized. Finally, potential directions for future research efforts aimed at reducing nonrecombination losses and enhancing the overall performance of these devices are outlined.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 19","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Suppressing Nonradiative Recombination Losses in Antimony Chalcogenide Thin-Film Solar Cell\",\"authors\":\"Yike Liu, Shunjian Xu, Yongping Luo, Guojie Chen, Shuo Chen, Zhuanghao Zheng, Guangxing Liang\",\"doi\":\"10.1002/solr.202400499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antimony chalcogenide solar cells have captured considerable attention in recent years with an efficiency of over 10%, due to their use of Earth-abundant materials and superior physical characteristics. Despite these achievements, significant nonradiative recombination processes within these solar cells present a substantial obstacle to further efficiency improvements. Therefore, this review delves into the primary mechanisms responsible for nonradiative recombination losses in antimony chalcogenide solar cells. Additionally, the latest advancements in addressing these losses are summarized. Finally, potential directions for future research efforts aimed at reducing nonrecombination losses and enhancing the overall performance of these devices are outlined.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"8 19\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400499\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400499","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A Review on Suppressing Nonradiative Recombination Losses in Antimony Chalcogenide Thin-Film Solar Cell
Antimony chalcogenide solar cells have captured considerable attention in recent years with an efficiency of over 10%, due to their use of Earth-abundant materials and superior physical characteristics. Despite these achievements, significant nonradiative recombination processes within these solar cells present a substantial obstacle to further efficiency improvements. Therefore, this review delves into the primary mechanisms responsible for nonradiative recombination losses in antimony chalcogenide solar cells. Additionally, the latest advancements in addressing these losses are summarized. Finally, potential directions for future research efforts aimed at reducing nonrecombination losses and enhancing the overall performance of these devices are outlined.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.