Miriam Minguez-Avellan, Noemi Farinós-Navajas, Jaume Noguera-Gómez, Víctor Sagra Rodríguez, Marta Vallés-Pelarda, Cristina Momblona, Teresa S. Ripolles, Pablo P. Boix, Rafael Abargues
{"title":"透镜纳米复合材料:迈向光催化降解有机染料的一步","authors":"Miriam Minguez-Avellan, Noemi Farinós-Navajas, Jaume Noguera-Gómez, Víctor Sagra Rodríguez, Marta Vallés-Pelarda, Cristina Momblona, Teresa S. Ripolles, Pablo P. Boix, Rafael Abargues","doi":"10.1002/solr.202400449","DOIUrl":null,"url":null,"abstract":"<p>Metal halide perovskites offer a promising opportunity for transforming solar energy into chemical energy, thereby addressing pressing environmental challenges. While their excellent optoelectronic properties have been successfully applied in photovoltaics, their potential in photocatalysis remains relatively unexplored. Herein, we report a novel humidity-driven approach for the in situ synthesis of MAPbI<sub>3</sub> nanocrystals (NCs) within a nickel acetate matrix, forming a nanocomposite thin film that enhances the system's stability and enables its use in photochemical reactions. UV-Vis spectroscopy and X-ray diffraction confirm the rapid and effective synthesis of NCs within the matrix after 1 min at 80% relative humidity (RH). Optimal photoconversion conditions are attained after 60 min of exposure at 80% RH, due to the increased porosity and nanocrystal size over time as revealed by electron microscopy. The MAPbI<sub>3</sub>-Ni(AcO)<sub>2</sub> nanocomposite exhibits superior photocatalytic activity compared to standard polycrystalline MAPbI<sub>3</sub> films for the decomposition of Sudan III under simulated sunlight. Furthermore, the nanocomposite demonstrates good recyclability over multiple cycles. Overall, this work highlights the potential of MHP-based nanocomposites for solar-driven catalytic systems in pollution mitigation.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 19","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perovskite Nanocomposite: A Step Toward Photocatalytic Degradation of Organic Dyes\",\"authors\":\"Miriam Minguez-Avellan, Noemi Farinós-Navajas, Jaume Noguera-Gómez, Víctor Sagra Rodríguez, Marta Vallés-Pelarda, Cristina Momblona, Teresa S. Ripolles, Pablo P. Boix, Rafael Abargues\",\"doi\":\"10.1002/solr.202400449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal halide perovskites offer a promising opportunity for transforming solar energy into chemical energy, thereby addressing pressing environmental challenges. While their excellent optoelectronic properties have been successfully applied in photovoltaics, their potential in photocatalysis remains relatively unexplored. Herein, we report a novel humidity-driven approach for the in situ synthesis of MAPbI<sub>3</sub> nanocrystals (NCs) within a nickel acetate matrix, forming a nanocomposite thin film that enhances the system's stability and enables its use in photochemical reactions. UV-Vis spectroscopy and X-ray diffraction confirm the rapid and effective synthesis of NCs within the matrix after 1 min at 80% relative humidity (RH). Optimal photoconversion conditions are attained after 60 min of exposure at 80% RH, due to the increased porosity and nanocrystal size over time as revealed by electron microscopy. The MAPbI<sub>3</sub>-Ni(AcO)<sub>2</sub> nanocomposite exhibits superior photocatalytic activity compared to standard polycrystalline MAPbI<sub>3</sub> films for the decomposition of Sudan III under simulated sunlight. Furthermore, the nanocomposite demonstrates good recyclability over multiple cycles. Overall, this work highlights the potential of MHP-based nanocomposites for solar-driven catalytic systems in pollution mitigation.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"8 19\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400449\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400449","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
金属卤化物过氧化物为将太阳能转化为化学能,从而应对紧迫的环境挑战提供了一个大有可为的机会。虽然金属卤化物的优异光电特性已成功应用于光伏领域,但其在光催化领域的潜力仍相对有待开发。在此,我们报告了一种在醋酸镍基质中原位合成 MAPbI3 纳米晶体(NCs)的新型湿度驱动方法,该方法形成的纳米复合薄膜可增强系统的稳定性,使其能够用于光化学反应。紫外可见光谱和 X 射线衍射证实,在相对湿度(RH)为 80% 的条件下,1 分钟后就能在基质中快速有效地合成 NC。由于电子显微镜显示孔隙率和纳米晶体尺寸随着时间的推移而增大,因此在 80% 相对湿度下暴露 60 分钟后就能达到最佳光电转换条件。与标准多晶 MAPbI3 薄膜相比,MAPbI3-Ni(AcO)2 纳米复合材料在模拟阳光下分解苏丹 III 时表现出更高的光催化活性。此外,这种纳米复合材料在多次循环中表现出良好的可回收性。总之,这项工作凸显了基于 MHP 的纳米复合材料在太阳能驱动的污染缓解催化系统中的潜力。
Perovskite Nanocomposite: A Step Toward Photocatalytic Degradation of Organic Dyes
Metal halide perovskites offer a promising opportunity for transforming solar energy into chemical energy, thereby addressing pressing environmental challenges. While their excellent optoelectronic properties have been successfully applied in photovoltaics, their potential in photocatalysis remains relatively unexplored. Herein, we report a novel humidity-driven approach for the in situ synthesis of MAPbI3 nanocrystals (NCs) within a nickel acetate matrix, forming a nanocomposite thin film that enhances the system's stability and enables its use in photochemical reactions. UV-Vis spectroscopy and X-ray diffraction confirm the rapid and effective synthesis of NCs within the matrix after 1 min at 80% relative humidity (RH). Optimal photoconversion conditions are attained after 60 min of exposure at 80% RH, due to the increased porosity and nanocrystal size over time as revealed by electron microscopy. The MAPbI3-Ni(AcO)2 nanocomposite exhibits superior photocatalytic activity compared to standard polycrystalline MAPbI3 films for the decomposition of Sudan III under simulated sunlight. Furthermore, the nanocomposite demonstrates good recyclability over multiple cycles. Overall, this work highlights the potential of MHP-based nanocomposites for solar-driven catalytic systems in pollution mitigation.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.