通过底部钝化策略提高反向高带隙过氧化物太阳能电池的效率和稳定性

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-08-29 DOI:10.1002/solr.202400391
Li-Chun Chang, Anh Dinh Bui, Keqing Huang, Felipe Kremer, Frank Brink, Wei Wang, Anne Haggren, Azul Osorio Mayon, Xuan Minh Chau Ta, Leiping Duan, Olivier Lee Cheong Lem, Yihui Hou, Dang-Thuan Nguyen, Grace Dansoa Tabi, Hualin Zhan, Viqar Ahmad, The Duong, Thomas white, Daniel Walter, Klaus Weber, Kylie Catchpole, Heping Shen
{"title":"通过底部钝化策略提高反向高带隙过氧化物太阳能电池的效率和稳定性","authors":"Li-Chun Chang,&nbsp;Anh Dinh Bui,&nbsp;Keqing Huang,&nbsp;Felipe Kremer,&nbsp;Frank Brink,&nbsp;Wei Wang,&nbsp;Anne Haggren,&nbsp;Azul Osorio Mayon,&nbsp;Xuan Minh Chau Ta,&nbsp;Leiping Duan,&nbsp;Olivier Lee Cheong Lem,&nbsp;Yihui Hou,&nbsp;Dang-Thuan Nguyen,&nbsp;Grace Dansoa Tabi,&nbsp;Hualin Zhan,&nbsp;Viqar Ahmad,&nbsp;The Duong,&nbsp;Thomas white,&nbsp;Daniel Walter,&nbsp;Klaus Weber,&nbsp;Kylie Catchpole,&nbsp;Heping Shen","doi":"10.1002/solr.202400391","DOIUrl":null,"url":null,"abstract":"<p>\nThe bottom perovskite with the hole transport layer (HTL) in inverted perovskite solar cells (PSCs) interface has received little attention due to challenges like interlayer dissolution during perovskite deposition. And voids at the perovskite/HTL interface can degrade cell performance. This work introduces a two-dimensional (2D) perovskite layer between the perovskite and poly (N, N′-bis-4-butylphenyl-N, N′-bisphenyl) benzidine (Poly-TPD) HTL using a mixed solution of 4-methylphenethylammonium chloride (4M-PEA-Cl), methylammonium iodide (MA-I), and Poly(9,9-bis(3′-(N,N-dimethyl)-N-ethylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene))dibromide (PFN-Br). The amine functional groups in the organic salts improved HTL wettability, resulting in a void-free interface. 4M-PEA-Cl, with its strong electron-withdrawing benzene ring, outperformed other amine-containing salts in passivating undercoordinated Pb<sup>2+</sup> ions. Incorporating this hybrid passivation layer in PSCs resulted in a 1.8% absolute increase in power conversion efficiency (PCE) to 19.1% with 1.68 eV perovskite bandgap. Additionally, the passivated PSCs demonstrated enhanced operational stability, retaining 91% of their initial efficiency after 800 hours of continuous 1-sun illumination, compared to 84.7% for the control sample.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 19","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400391","citationCount":"0","resultStr":"{\"title\":\"Enhanced Efficiency and Stability for the Inverted High-Bandgap Perovskite Solar Cell via Bottom Passivation Strategy\",\"authors\":\"Li-Chun Chang,&nbsp;Anh Dinh Bui,&nbsp;Keqing Huang,&nbsp;Felipe Kremer,&nbsp;Frank Brink,&nbsp;Wei Wang,&nbsp;Anne Haggren,&nbsp;Azul Osorio Mayon,&nbsp;Xuan Minh Chau Ta,&nbsp;Leiping Duan,&nbsp;Olivier Lee Cheong Lem,&nbsp;Yihui Hou,&nbsp;Dang-Thuan Nguyen,&nbsp;Grace Dansoa Tabi,&nbsp;Hualin Zhan,&nbsp;Viqar Ahmad,&nbsp;The Duong,&nbsp;Thomas white,&nbsp;Daniel Walter,&nbsp;Klaus Weber,&nbsp;Kylie Catchpole,&nbsp;Heping Shen\",\"doi\":\"10.1002/solr.202400391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nThe bottom perovskite with the hole transport layer (HTL) in inverted perovskite solar cells (PSCs) interface has received little attention due to challenges like interlayer dissolution during perovskite deposition. And voids at the perovskite/HTL interface can degrade cell performance. This work introduces a two-dimensional (2D) perovskite layer between the perovskite and poly (N, N′-bis-4-butylphenyl-N, N′-bisphenyl) benzidine (Poly-TPD) HTL using a mixed solution of 4-methylphenethylammonium chloride (4M-PEA-Cl), methylammonium iodide (MA-I), and Poly(9,9-bis(3′-(N,N-dimethyl)-N-ethylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene))dibromide (PFN-Br). The amine functional groups in the organic salts improved HTL wettability, resulting in a void-free interface. 4M-PEA-Cl, with its strong electron-withdrawing benzene ring, outperformed other amine-containing salts in passivating undercoordinated Pb<sup>2+</sup> ions. Incorporating this hybrid passivation layer in PSCs resulted in a 1.8% absolute increase in power conversion efficiency (PCE) to 19.1% with 1.68 eV perovskite bandgap. Additionally, the passivated PSCs demonstrated enhanced operational stability, retaining 91% of their initial efficiency after 800 hours of continuous 1-sun illumination, compared to 84.7% for the control sample.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"8 19\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400391\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400391\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400391","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

倒置型包晶体太阳能电池(PSCs)中的底部包晶体与空穴传输层(HTL)界面很少受到关注,原因是在包晶体沉积过程中存在层间溶解等难题。而包晶石/HTL 界面的空隙会降低电池性能。这项研究利用 4-甲基苯乙基氯化铵(4M-PEA-Cl)的混合溶液,在包晶与聚(N,N′-双-4-丁基苯基-N,N′-双苯基)联苯胺(Poly-TPD)HTL 之间引入了二维(2D)包晶层、甲基碘化铵(MA-I)和聚(9,9-双(3′-(N,N-二甲基)-N-乙基氨基丙基-2,7-芴)-alt-2,7-(9,9-二辛基芴))二溴化物(PFN-Br)的混合溶液。有机盐中的胺官能团改善了 HTL 的润湿性,使界面无空隙。4M-PEA-Cl 具有很强的苯环吸电子性,在钝化配位不足的 Pb2+ 离子方面优于其他含胺盐。在 PSC 中加入这种混合钝化层后,功率转换效率 (PCE) 绝对值提高了 1.8%,达到 19.1%,过氧化物带隙为 1.68eV。此外,钝化的 PSCs 还显示出更高的运行稳定性,在连续 800 小时的 1 太阳光照射后,其初始效率仍保持 91%,而对照样品的效率仅为 84.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Efficiency and Stability for the Inverted High-Bandgap Perovskite Solar Cell via Bottom Passivation Strategy

The bottom perovskite with the hole transport layer (HTL) in inverted perovskite solar cells (PSCs) interface has received little attention due to challenges like interlayer dissolution during perovskite deposition. And voids at the perovskite/HTL interface can degrade cell performance. This work introduces a two-dimensional (2D) perovskite layer between the perovskite and poly (N, N′-bis-4-butylphenyl-N, N′-bisphenyl) benzidine (Poly-TPD) HTL using a mixed solution of 4-methylphenethylammonium chloride (4M-PEA-Cl), methylammonium iodide (MA-I), and Poly(9,9-bis(3′-(N,N-dimethyl)-N-ethylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene))dibromide (PFN-Br). The amine functional groups in the organic salts improved HTL wettability, resulting in a void-free interface. 4M-PEA-Cl, with its strong electron-withdrawing benzene ring, outperformed other amine-containing salts in passivating undercoordinated Pb2+ ions. Incorporating this hybrid passivation layer in PSCs resulted in a 1.8% absolute increase in power conversion efficiency (PCE) to 19.1% with 1.68 eV perovskite bandgap. Additionally, the passivated PSCs demonstrated enhanced operational stability, retaining 91% of their initial efficiency after 800 hours of continuous 1-sun illumination, compared to 84.7% for the control sample.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Masthead Revealing Defect Passivation and Charge Extraction by Ultrafast Spectroscopy in Perovskite Solar Cells through a Multifunctional Lewis Base Additive Approach Perovskite-Based Tandem Solar Cells Masthead Investigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1