Min-Jae Si, Dongeon Kim, Seoryeon Jeong, Minjung Yang, Jeongeun Kim, Seo-Young Lee, In-Suh Lee, Jaewoo Jeong, Byeong-Chan Kim, Taeho Han, Beomkwan Kim, Yongnam Ahn, Seungin Jee, Yujin Jung, Se-Woong Baek
{"title":"通过溶液相配体交换实现胶体量子点固态红外光电子学","authors":"Min-Jae Si, Dongeon Kim, Seoryeon Jeong, Minjung Yang, Jeongeun Kim, Seo-Young Lee, In-Suh Lee, Jaewoo Jeong, Byeong-Chan Kim, Taeho Han, Beomkwan Kim, Yongnam Ahn, Seungin Jee, Yujin Jung, Se-Woong Baek","doi":"10.1007/s11814-024-00268-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the rational strategy to build lead sulfide (PbS)-based colloidal quantum dots (CQDs) solid for high performance photodetection and solar energy conversion in the near- and short-wave infrared spectra. We demonstrated a facile engineering process from CQD synthesis to infrared CQD devices fabrication. By controlling the monomer concentration, we effectively tuned the infrared absorption characteristics and the solution-phase surface ligand exchange resulted in highly concentrated CQD ink, facilitating the formation of uniform, and thick CQD solids, which is crucial for high absorption efficiency. The CQD-based infrared photodetector achieved a specific detectivity of approximately 10<sup>11</sup> Jones and fast response times under 100 ns. Furthermore, optimized PbS CQDs were utilized in solar cells and achieved high quantum efficiency across visible to infrared spectrum, indicating a significant potential for 2-terminal tandem structures with perovskite front cells.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 13","pages":"3561 - 3572"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colloidal Quantum Dot Solid-Based Infrared Optoelectronics Enabled by Solution-Phase Ligand Exchange\",\"authors\":\"Min-Jae Si, Dongeon Kim, Seoryeon Jeong, Minjung Yang, Jeongeun Kim, Seo-Young Lee, In-Suh Lee, Jaewoo Jeong, Byeong-Chan Kim, Taeho Han, Beomkwan Kim, Yongnam Ahn, Seungin Jee, Yujin Jung, Se-Woong Baek\",\"doi\":\"10.1007/s11814-024-00268-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the rational strategy to build lead sulfide (PbS)-based colloidal quantum dots (CQDs) solid for high performance photodetection and solar energy conversion in the near- and short-wave infrared spectra. We demonstrated a facile engineering process from CQD synthesis to infrared CQD devices fabrication. By controlling the monomer concentration, we effectively tuned the infrared absorption characteristics and the solution-phase surface ligand exchange resulted in highly concentrated CQD ink, facilitating the formation of uniform, and thick CQD solids, which is crucial for high absorption efficiency. The CQD-based infrared photodetector achieved a specific detectivity of approximately 10<sup>11</sup> Jones and fast response times under 100 ns. Furthermore, optimized PbS CQDs were utilized in solar cells and achieved high quantum efficiency across visible to infrared spectrum, indicating a significant potential for 2-terminal tandem structures with perovskite front cells.</p></div>\",\"PeriodicalId\":684,\"journal\":{\"name\":\"Korean Journal of Chemical Engineering\",\"volume\":\"41 13\",\"pages\":\"3561 - 3572\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11814-024-00268-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00268-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
This study explores the rational strategy to build lead sulfide (PbS)-based colloidal quantum dots (CQDs) solid for high performance photodetection and solar energy conversion in the near- and short-wave infrared spectra. We demonstrated a facile engineering process from CQD synthesis to infrared CQD devices fabrication. By controlling the monomer concentration, we effectively tuned the infrared absorption characteristics and the solution-phase surface ligand exchange resulted in highly concentrated CQD ink, facilitating the formation of uniform, and thick CQD solids, which is crucial for high absorption efficiency. The CQD-based infrared photodetector achieved a specific detectivity of approximately 1011 Jones and fast response times under 100 ns. Furthermore, optimized PbS CQDs were utilized in solar cells and achieved high quantum efficiency across visible to infrared spectrum, indicating a significant potential for 2-terminal tandem structures with perovskite front cells.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.